• Title/Summary/Keyword: Bending load

Search Result 1,772, Processing Time 0.027 seconds

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.505-511
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions fur pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis (압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석)

  • Oh C.S.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.401-402
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

  • PDF

Comments on a Case Study on Engineering Failure Analysis of Link Chain

  • Yu, George Y.H.
    • Safety and Health at Work
    • /
    • v.12 no.4
    • /
    • pp.544-545
    • /
    • 2021
  • The article by Tae-Gu Kim et al. conducted elastic FE modeling, which was inappropriate for fracture of elastic-plastic chain material (11.3% of elongation). FE analysis results and the findings in the fracto-graphic analysis did not tally but contradicted each other. The article identified "incorrect installation"/bending forces as the root cause while FE results of the chain under bending forces showed very low stresses at fracture locations but the highest stress in the middle of shank of the chain. The article's "step-like topographies indicating the fracture due to bending moment rather than uniaxial tension" lacked scientific support. The load value carried by each chain section under bending/incorrect installation was only half of that under tension, thus the article using same load value in FE simulation comparison for bending and tension was incorrect. The real cause of the chain fracture was likely improper checking the lifted load or/and using the wrong chain with much lower safety working load.

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

Nonlinear Analysis of High Strength RC Columns Subjected to Axial Load and Biaxial Bending (2축 편심 축력을 받는 고강도 RC 기둥의 비선형해석)

  • 신성우;반병열;유석형;조문희;한경돈;이종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.41-46
    • /
    • 2001
  • The main objective of this study is to provide data on high strength concrete columns subjected to axial load and biaxial bending. For the design of biaxial bending, the approximate method (Bresler load contour method, PCA load contour method) is presented in ACI code. The present study investigate whether the methods are valid in high strength concrete and compare analysis results(by FEM method) with experimental results. Also, this study examines whether statics method and failure surface equation(by Hsu) are adequate.

  • PDF

Performance Monitoring and Load Analysis of Wind Turbine (풍력발전기의 성능 모니터링 및 하중분석)

  • Bae, Jae-Sung;Kim, Sung-One;Youn, Joung-Eun;Kyung, Nam-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers (마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구)

  • Kim Jae Hwan;Lee Eui Bae;Kim Yong Sun;Kim Yong Duk;Joo Ji Hyun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF

Fatigue Strength of Fillet Weldment under Out-of-plane Bending Load (필릿 용접부의 면외굽힘하중에 대한 피로강도)

  • 강성원;한상혁;김화수;백영민
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.28-35
    • /
    • 2003
  • Fatigue tests of transverse fillet weldment were performed under out-of-plane bending loads. Significant increase of the fatigue strength was observed under out-of-plane bending loads, compared to the one under in-plane loads (axial loads). Applicability of the crack propagation analysis using LEFM for the surface crack of fillet weldment were investigated as well, in parallel with the fatigue tests. For the rational assessment of the fatigue strength of welded ship structures where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to complexity of applied load and structural geometry, further investigation is recommended for the effect of the out-of-plane bending stress on the fatigue strength of weldment.

An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear (냉간단조 베벨기어의 굽힘피로강도 평가)

  • 김재훈;사정우;김덕회;이상연
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

Design Bending Moment of Cantilever Slab for Long Span decks with KL-510 Load (KL-510 하중을 적용한 장지간 바닥판의 캔틸레버부 설계휨모멘트)

  • Chung, Chulhun;Joo, Sanghoon;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.595-604
    • /
    • 2016
  • This paper proposed the design bending moments of cantilever slabs with KL-510 load according to span length of long span decks. Their span length range is from 6.0 to 12.0 meter, and length of cantilever slabs is from 30 to 50 percent of their span length. The effects of orthotropic concrete decks, stiffness of steel girders and multiple lane loading factors (MLLF) were reflected in the design bending moments. The proposed design bending moments of cantilever slabs were compared to the design bending moments with DB-24 load.