• Title/Summary/Keyword: Bending Radius

Search Result 291, Processing Time 0.026 seconds

Bending and Torsional Characteristics of Rectangular CFRP Tubes with Various Aspect Ratios (다양한 형상비를 갖는 사각 CFRP 튜브의 굽힘 및 비틀림 특성)

  • Lee, Yongsung;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • Fiber reinforced composite materials have outstanding specific strength and specific stiffness. So the use of composite materials increases in various kinds of industrial fields including sports goods such as bicycles. Composite materials are used to make structural parts with various kinds of shapes. Specially, rectangular composite tubes are used to make a few of composite bicycle frames, but there has been a few of research on this issue. Rectangular composite tubes are designed to have appropriate radius of curvature and endure bending and torsional loads. In this research, nine kinds of rectangular composite tubes having aspect ratios 1:1, 1:1.5, 1:2 and radius of curvatures R5, R10, R15 were fabricated. The carbon fiber reinforced composite material was used to make tubes having same cross sectional areas. The stacking sequence of tubes is $[0/90/{\pm}45]s$. Experimental evaluation was accomplished to apply bending and torsional load to the tubes. Experimental results show that bending and torsional characteristics depend on radius of curvature and aspect ratio of rectangular composite tubes.

A Study On The Bending Characteristics of Ribbon Cable Unit (리본광케이블 유니트의 구부림 특성 연구)

  • 이병철;이영탁;김미경
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.379-384
    • /
    • 1995
  • In order to construct B-ISDN, it is inevitable to introduce optical fiber of low loss and wide bandwidth. Coincidently, high count optical fiber cable is solely important to form optical subscriber network. The best structure of high count optical fiber cable to achieve multi-splicing as well as high density at the same time is the one of taking optical ribbon as a unit of accomodation. However, since optical ribbon has its own width. optical loss due to length difference during the bending of ribbon cable unit occurs in relatively easy way. Therefore, care should be taken during its manufacturing and storage. In t\1::; paper, strain, bending radius and lateral pressure of each fiber in ribbon due to the bending of ribbon cable unit are caculated theoretically. Hence, we have measured optical loss of each fiber as function of unit bending radius, when we bent the ribbon cable unit on the various reel. We found that the result accords well with the theoretical analysis. The result shows the importance to determine proper radius of reel used in ribbon cable manufacturing and storage. orage.

  • PDF

Verification of load equations for sandwich plates during U-bending (샌드위치판재의 U-bending 공정에서 굽힘하중식의 검증)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.435-438
    • /
    • 2008
  • To verify the load equations, the load-stroke curves of the load equation that were analytically derived for sandwich plates were compared with those of the simulations in the case of the total thickness of 3 mm, the thickness of the face sheets of 0.5 mm, a gap between attachment points of 1.5 mm, and a thickness of the core element of 0.8 mm. The results of the comparisons showed that the overall analytic loads enable the prediction of the numerical loads irrespective of the change of the clearance, the radius of the die, and the radius ratio.

  • PDF

Development of Prediction Model for Sidewall Curl in Sheet Metal Forming(I)-Analytical Model (박판성형시 컬 예측모델 개발(I)-해석적 모델)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.432-437
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control sidewall curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. The analytical model includes the variables of applied tensile force, the yield strength, the elastic modulus, the bending radius, and the sheet thickness, which are the primary factors affecting sidewall curl during sheet stamping operations. For the accuracy of analytical model, six possible deformation patterns are proposed on the basis of material properties and bending geometries.

Orientational deformation of ferroelectric liquid crystal molecules by bending performance of plastic substrate

  • Son, Ock-Soo;Lee, Ji-Hoon;Jang, Chi-Woong;Lim, Tong-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.338-341
    • /
    • 2005
  • We have examined the aspects of the orientational ordering deformation of ferroelectric liquid crystal during bending performance of plastic substrate by analyzing the polarizing optical microscope texture and the birefringence of the cell. Striped texture becomes more prominent as the radius of curvature of substrate gets smaller. The optic axis of the adjacent stripes domain was not same and the relative angle between them becomes larger as the radius of curvature gets smaller. Especially, the optic axis rotation angle of one domain was lager than the other and the liquid crystal molecules in each domain became more coherent. In addition, the birefringence data with obliquely incident light shows the polar direction shift of liquid crystal molecule by bending performance.

  • PDF

The Characteristics of Electrical Breakdown of Dielectric Paper and Cable under mechanical stress (기계적 응력상태에서 절연지 및 케이블의 전기절연 특성)

  • Kim, Young-Seok;Kwag, Dong-Soon;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.3-6
    • /
    • 2003
  • The electrical and mechanical properties of dielectric paper and cable at cryogenic temperature have been investigated to optimum insulating design of high-Tc superconducting(HTS) cable. From the results, Tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain could know that decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen was decreased because PPLP was degradated. According as bending radius multiple is decrese, breakdown voltage decreased sharply. And bending radius multiple is thought that more than about 25 is suitable.

  • PDF

A study on the unfolding length of Z-bending machining using thin plate (박판을 이용한 Z-굽힘 가공의 전개 길이에 관한 연구)

  • Park, Yong-Sun;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2021
  • The bending process of a press die is to bend a flat blank to the required angle. There are V-bending, U-bending, Z-bending, O-bending etc. for bending processing, and the basic principle of calculating the unfolding length of die processing is used as the neutral plane length. Since the constant of the length value of the neutral surface is different depending on the type of bending, it is impossible to accurately calculate it. In particular, Z-bending processing is performed twice, and it is set on the upper and lower surfaces of the blank, and bending processing occurs at the same time as the upward and downward bending, and the elongation of the material occurs and the material increases. It is not possible to check with the calculated value, and it occurs in many cases where the mold is modified after start-up. This study aims to minimize die modification by developing a formula to calculate the development length of Z-bend.

Study on Springback Characteristic of Cold Rolled Steel Sheet (자동차용 냉연 강판의 형상 동결성 연구)

  • 한수식;박기철;남재복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.17-24
    • /
    • 1998
  • This paper deals with the springback characteristics of cold rolled sheet steel through the use of the V-bending process and U-bending one. The influence of material properties on the springback of forming processes was investigated. In the V-bending process there was an optimum bend radius for each combination of parameters which produced minimal springback. In the U-bending process the blank holder force can control the degree of springback. A high blank holding force resulted in a uniform strain distribution and reduced the level of springback.

Evaluation of Bending Property on Principal Domestic Speciees (주요 국산수종의 휨가공성 평가)

  • Jung, In-Suk;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • This study was carried out to evaluate bending property on principal domestic species such as sargent cherry(Prunus sargentii), bitter wood(Picrasma quassioides), horn beam(Carpinus laxiflora), cork oak(Quercus variabilis), birch(Betula schmidtii), painted maple(Acer mono), basswood(Tilia amurensis), red pine(Pinus densiflora), pitch pine(Pinus rigtda), royal pawlonia(Paulownia tomentosa) by microwave heating. In this study, radius of curvature(ROC) for bending process was classified by radius of curvature(ROC) of bending plate such as 4 cm, 6 cm, and 10 cm, and thickness of metal-strap(TMS) was 0.6 mm and 0.8 mm. Bending process was successfully operated for 100 percent in bitter wood, horn beam, birch and painted maple. On the other hand, there was a success rate of 58 percent in sargent cherry and 83 percent in cork oak and 29 percent in basswood and 8 percent in royal pawlonia which is the worst bending property. All specimens of basswood and royal pawlonia were broken at 4 cm of ROC. Success rate of bending property was shown 44 percent in red pine and 56 percent in pitch pine. TMS has an effect on only drying speed in drying process than difficulty and facility of bending property. It was considered that the thinner TMS in drying process is the faster in drying speed of bent wood.

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.