• Title/Summary/Keyword: Bending Process

Search Result 1,282, Processing Time 0.033 seconds

The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate (서냉 고로슬래그 굵은골재를 활용한 PHC 파일의 최적배합 및 물리적 특성)

  • Park, Yong-Kyu;Kim, Hyun-Woo;Kim, Seung-Il;Hur, Kab-Soo;Yoon, Ki-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2014
  • The PHC pile utilizing the air-cooled blast-furnace slag as coarse aggregate was studied. This research was progressed with the range from the indoor mixing design evaluation into the actual goods production. The physical properties of the PHC pile are determined to satisfy through the appropriate mixing design adjustments. However, it should eliminate the aggregates including CaO and MgO in SG when it utilize in an AC (autoclave) type manufacturing process. It satisfied the bending moment, shear strength, and compressive strength of KS F 4306 except the surface states of the pile.

Tuning Exothermic Curing Reaction of Hydrogenated Bisphenol A Epoxy Resins for Stone Conservation (석조문화재 보존.복원에 적용될 에폭시 수지의 경화 시 반응열 제어 및 안정성 향상 연구)

  • Choi, Yong-Seok;Park, You-Jin;Kang, Yong-Soo;Won, Jong-Ok;Kim, Jeong-Jin;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.131-139
    • /
    • 2012
  • The exothermic cure kinetics of epoxy resin was controlled by hardener containing fast and slow curing agents. The epoxy risen comprises hydrogenated bisphenol A-based epoxide (HBA), fast curing agent (FH) and slow curing agent poly(propyleneglycol)bis(2-aminopropylether) (SH). Talc was used as an inorganic additive. In the process of curing, cure kinetics along with temperature was monitored by differential scanning calorimeter (DSC) and thermocouple to show that the temperature increase was well controlled by adjusting the hardener mixture. Additionally, bending and tensile strengths of the epoxy/talc composites were also measured to be lower and higher with the amount of the talc inorganic additive, respectively. It is thus concluded that the increase in the temperature during exothermic curing reaction and mechanical properties of epoxy resins are tuned by optimizing hardener mixture for successful stone conservation.

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.

Optimal Design of Wind Turbine Tower Model Using Reliability-Based Design Optimization (신뢰성 기반 최적설계를 이용한 풍력 발전기 타워 최적 설계)

  • Park, Yong-Hui;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.575-584
    • /
    • 2014
  • In this study, the NREL 5 MW wind turbine tower model was optimized according to the multi-body dynamics and reliability-based design. The mathematical model was defined as a link-joint system including dynamic characteristics derived from Timoshenko's beam theory. For the optimization problem, the sensitivities to variations in the tower thicknesses and inner and outer diameters were acquired and arranged in terms of safety and efficiency according to bending stress and buckling standards. An optimal design was calculated with the advanced first-order second moment method and used to define a finite element model for validation. The finite element model was simulated by static analysis. The relationship between the multi-body dynamic and finite element method throughout the process was investigated, and the optimal model, which had high endurance despite its low mass, was determined.

The Analysis on Work Clothes' Clothing Comfort and Wearer Mobility of Welding and Grinding Workers in the Machine and Shipbuilding Industries (기계, 조선산업 용접 및 사상공정 근로자의 작업복 착의실태와 착용감 및 동작성능 연구)

  • Park, Gin-Ah;Park, Hye-Won;Bae, Hyun-Sook;Kim, Jie-Kwan
    • Journal of Fashion Business
    • /
    • v.15 no.2
    • /
    • pp.145-159
    • /
    • 2011
  • The study aimed to analyze the status quo of manufacturing work environment and the work clothes' clothing comfort and wearer mobility of welding and grinding work processes in the machine and shipbuilding industries in South Korea. A questionnaire survey was conducted for the study, which consisted of questions about work clothes' clothing comfort and wearer mobility according to body parts. The findings derived from the research were: the high impact levels of work environment factors on welding and grinding work processes were noise, metal fragment, superheat, toxic gas, UV ray factors. Subject workers' assessment of work clothes' clothing pressures were in the levels between 3 (i.e. moderate) and 4 (i.e. comfortable) in a range of 5-point scale. The impact levels of wearer mobility factor were high on the work processes of welding and grinding in machine and grinding in shipbuilding. While welding process in shipbuilding showed a 'moderate' wearer mobility level and this was because its work postures were uncomfortable yet the rate of the motion change was low. The consideration to develop the work clothes specialized for certain work processes should include the materials' protecting performance from the hazardous work environment factors; and work clothes' designs that provides workers with maximized clothing comfort and wearer mobility for bending or tilting postures of upper, lower and lateral body parts defined in the study.

A Study on the Weld Performance of High Strength Steel considering the Fabrication (제작을 고려한 고강도강재의 용접성능에 관한 연구)

  • Kyung, Kab Soo;Hong, Sung Wook;Park, Yong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.647-656
    • /
    • 2002
  • High-strength steel in steel bridges is the key to achieving cost-efficiency because it facilitates lightweight construction and rationalizes structure. The future of high-strength steel is bright, with its use projected to expand. As such, it is necessary to evaluate precisely various factors affecting the process of fabricating high-strength steel, i.e., welding heat, strain hardening, and weldability and performance of the welded joints. This study therefore performed the maximum hardness test and y-groove weld crack test using welding processes such as SAW, FCAW, and GMAW, in order to investigate the welding performance and characteristics of welded Joints or high-strength steel produced in Korea such as SM570, POSTEN60, and POSTEN80. In addition, a series of welding tests was carried out to estimate the tensile strength, bending characteristics, absorbed energy, and hardness in welded joints.

Light-Weight Design of Automotive Tension Link Based on Computer Aided Engineering (컴퓨터 시뮬레이션을 이용한 자동차용 텐션 링크의 경량 설계)

  • Kim, Kee Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.561-566
    • /
    • 2017
  • The weight reduction design process of tension links could be studied based on the variation of tension, bending and torsional stiffness after substituting STKM11A steels with aluminum alloys (A356) with tensile strength of 245 MPa. The existed I-beam type link component may have a weak point for loads applied from a special direction. Therefore, it was investigated to the optimal shape of the link component that could withstand loads from all directions and at the same time reduce weight. Various types of link shapes were designed and analyzed, and the optimized shape was found. The optimized design can reduce over 40% of the original steel link weight, and it could be suggested for light-weight design guides and safe design conditions for the development of tension links.

Rheological Changes of Chewing Gum During Storage (츄잉검의 저장중 물성변화)

  • Lee, Yoon-Hyung;Yoo, Myung-Shik;Jhin, Hong-Seung;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.460-468
    • /
    • 1985
  • Changes in intrumental and sensory Theological parameters of chewing gum during storage were stuided. Texture changes are influenced to the great extent by moisture content of stored chewing gum and D.E. of cornsyrup, meanwhile content of cornsyrup, process condition and storage temperature had a little effect on texture change. Highly significant correlation was observed between logarithmic instrumental texture parameters of deformation, bending and puncture test and logarithmic moisture content. And also good correlations were observed between each sensory and instrumental texture parameters. The optimum texture values were estimated by regression analysis.

  • PDF

A Study on the Evaluation of Design Compressive Strength and Flexural Strength of the Improved Deep Corrugated Steel Plate (성능 개선된 대골형 파형강판의 설계 압축 및 휨 강도 평가에 대한 연구)

  • Sim, Jong Sung;Lee, Hyeon Gi;Kang, Tae Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • The structures that use the bridge plates are considered to have advantages such as short work term, excellent economical efficiency and low maintenance cost. Bridge plates are being widely used for water ducts and eco-corridors as replacements of reinforced concrete ducts. Bridge plates are deep and have greater pitch as compare to conventionally deep corrugated steel plate. They are expected to be increasingly used in the future. The structures that use bridge plates have two forms, such as arch type and box type. The arch type structures are designed based on the compressive strength, and the box type structures, based on the moment in the plate member. In this study, the ultimate strength and moment strength of the connection part of the specimens were examined by their thickness. Static and bending tests used to evaluate the performance of bridge plate. Finally, These results were used in the design process.

A Study on the Three-dimensional Expression of Fashionable Textiles based on Analyses of 3D Scanning and Textile Properties -Focus on the Work of Iris van Herpen- (패션소재의 입체적 표현에 대한 3D Scanning 및 소재특성 분석 연구 -Iris van Herpen의 작품을 중심으로-)

  • Lee, ReA;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.20 no.2
    • /
    • pp.124-133
    • /
    • 2016
  • Currently the fashion industry is developing to create a novel culture due to the very sensitive and knowledge-oriented advancement of the IT industry. With fast turnover of information, consumers have come to have a more diverse desire for purchasing. Cubical expression techniques, which empathizes formativeness, can be a creative expression method adjusting into the trend of this era. Along with functional aspects of consumers, even in a textile manufacturing sector, new materials are required to meet sensitive and emotional aspects. Consumers' desire for new and creative designs and the development and adoption of new materials are essential to meet their emotions. The IT industry and fashion industry are forced to combine and a 3D apparel CAD system has been developed, enabling virtual clothing to be represented within a computer virtual space. All processes such as design, pattern creation, sewing and simulation are possible in 3D level. Digital clothing can shorten the production process time and is very effective in that it can reduce clothing waste generated during the sample production. This paper reviewed the works of Dutch designer, Iris van Herpen, who has developed formative designs. She tries to build, construct, and sculpt employing diversified materials other than soft textile materials, as shown in her series of fashion shows. The materials include films, 3D printed polymers, stiff and sheer organza, and artificial leather textiles. A few characteristics of her works have been selected in order to prepare patterns exhibiting the traits. The paper further focused on the physical features of the textile materials used to express similar techniques and its various forms were reviewed.