• 제목/요약/키워드: Bending Loads

검색결과 712건 처리시간 0.022초

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

Plastic load bearing capacity of multispan composite highway bridges with longitudinally stiffened webs

  • Unterweger, Harald;Lechner, Andreas;Greiner, Richard
    • Steel and Composite Structures
    • /
    • 제11권1호
    • /
    • pp.1-19
    • /
    • 2011
  • The introduction of the Eurocodes makes plastic design criteria available also for composite bridges, leading to more economical solutions compared with previous elastic design rules. Particularly for refurbishment old bridges with higher actual traffic loads, up to date outside the scope of the Eurocodes, strengthening should therefore be avoidable or at least be necessary only to a minor extent. For bridges with smaller spans and compact cross sections, the plastic load bearing capacity is clearly justified. In this work, however, the focus is placed on long span continuous composite bridges with deep, longitudinally stiffened girders, susceptible to local buckling. In a first step, the elastic - plastic cross section capacity of the main girder in bending is studied as an isolated case, based on high preloads acting on the steel girder only, due to the common assembling procedure without scaffolding. In a second step, the effects on the whole structure are studied, because utilising the plastic section capacity at midspan leads to a redistribution of internal forces to the supports. Based on the comprehensive study of an old, actual strengthened composite bridge, some limitations for plastic design are identified. Moreover, fully plastic design will sometimes need additional global analysis. Practical recommendations are given for design purposes.

Behavior of exterior concrete beam-column joints reinforced with Shape Memory Alloy (SMA) bars

  • Azariani, Hossein Rezaee;Esfahani, M. Reza;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.83-98
    • /
    • 2018
  • This research was conducted to study the behavior of exterior concrete beam-column joints with reinforced shape memory alloy (SMA) bars tested under cyclic loading. These bars benefit from superelastic behavior and can stand high loads without residual strains. The experimental part of the study, 8 specimens of exterior concrete beam-column joints were made and tested. Two different types of concrete with 30 and 45 MPa were used. Four specimens contained SMA bars and 4 specimens contained steel bars in beam-column joints. Furthermore, different transverse reinforcements were used in beams investigate the effects of concrete confinement. Specimens were tested under cyclic loading. Results show that SMA bars are capable of recentering to their original shape after standing large displacements. Due to the superelastic behavior of SMA bars, cracks at the joint core vanish under cyclic loading. As the cyclic loading increased, bending failure occurred in the beam outside the joint core. In the analytical parts of the study, specimens were simulated using the SeismoStruct software. Experimental and analytical results showed a satisfactory correlation. Plastic hinge length at the beam joint for specimens with SMA and steel bars was calculated by empirical equations, experimental and analytical results. It was shown that Paulay's and Priestley's equations are appropriate for concrete beam-column joints in both types of bars.

The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model

  • Khadimallah, Mohamed A.;Safeer, Muhammad;Taj, Muhammad;Ayed, Hamdi;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Mahmoud, S.R.;Ahmad, Manzoor;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.141-149
    • /
    • 2020
  • In the present study, a mechanical model is applied to account the effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell. The model immeasurably associates filament's bending rigidity, neighboring system elasticity, and cytosol viscosity with buckling wavelengths, buckling growth rates and buckling amplitudes of the filament. Cytoskeleton components in living cell bear large compressive force and are responsible in maintaining the cell shape. Actually these filaments are surrounded by viscoelastic media consisting of other filaments network and viscous cytosole within the cell. This surrounding, viscoelastic media affects the buckling behavior of these filaments when external force is applied on these filaments. The obtained results, indicate that the coupling of viscoelastic media with the viscous cytosol greatly affect the buckling behavior of microfilament. The buckling forces increased with the increase in the intensity of surrounding viscoelastic media.

틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가 (Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body)

  • 정달우;김정석;서승일;조세현;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석 (Elastic-Plastic Fracture Mechanics Analyses for Circumferential Part-Through Surface Cracks at the Interface Between Elbows and Pipes)

  • 송태광;오창균;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.710-717
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions fur straight pipes.

3차원 수치해석을 통한 궤도지지말뚝의 동적거동 평가 (Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis)

  • 유민택;백민철;이일화;이진선
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.255-264
    • /
    • 2017
  • Dynamic numerical simulation of pile-supported slab track system embedded in a soft soil and embankment was performed. 3D model was formulated in a time domain to consider the non-linearity of soil by utilizing FLAC 3D, which is a finite difference method program. Soil non-linearity was simulated by adopting the hysteric damping model and liner elements, which could consider soil-pile interface. The long period seismic loads, Hachinohe type strong motions, were applied for estimating seismic respose of the system, Parametric study was carried out by changing subsoil layer profile, embankment height and seismic loading conditions. The most of horizontal permanent displacement was initiated by slope failure. Increase of the embedded height and thickness of the soft soil layer leads increase of member forces of PHC piles; bending moment, and axial force. Finally, basic guidelines for designing pile-supported slab track system under seismic loading are recommended based on the analysis results.

Local buckling of thin and moderately thick variable thickness viscoelastic composite plates

  • Jafari, Nasrin;Azhari, Mojtaba;Heidarpour, Amin
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.783-800
    • /
    • 2011
  • This paper addresses the finite strip formulations for the stability analysis of viscoelastic composite plates with variable thickness in the transverse direction, which are subjected to in-plane forces. While the finite strip method is fairly well-known in the buckling analysis, hitherto its direct application to the buckling of viscoelastic composite plates with variable thickness has not been investigated. The equations governing the stiffness and the geometry matrices of the composite plate are solved in the time domain using both the higher-order shear deformation theory and the method of effective moduli. These matrices are then assembled so that the global stiffness and geometry matrices of a moderately thick rectangular plate are formed which lead to an eigenvalue problem that is solved to determine the magnitude of critical buckling load for the viscoelastic plate. The accuracy of the proposed model is verified against the results which have been reported elsewhere whilst a comprehensive parametric study is presented to show the effects of viscoelasticity parameters, boundary conditions as well as combined bending and compression loads on the critical buckling load of thin and moderately thick viscoelastic composite plates.

Finite element analysis of reinforced concrete spandrel beams under combined loading

  • Ibraheem, O.F.;Bakar, B.H. Abu;Johari, I.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.291-308
    • /
    • 2014
  • A nonlinear, three-dimensional finite element analysis was conducted on six intermediate L-shaped spandrel beams using the "ANSYS Civil FEM" program. The beams were constructed and tested in the laboratory under eccentric concentrated load at mid-span to obtain a combined loading case: torsion, bending, and shear. The reinforcement case parameters were as follows: without reinforcement, with longitudinal reinforcement only, and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions: T/V = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). The failure of the plain beams was brittle, and the addition of longitudinal steel bars increased beam strength, particularly under low eccentricity. Transverse reinforcement significantly affected the strength at high eccentricities, that is, at high torque. A program can predict accurately the behavior of these beams under different reinforcement cases, as well as under different ratios of combined loadings. The ANSYS model accurately predicted the loads and deflections for various types of reinforcements in spandrel beams, and captured the critical crack regions of these beams.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.