• Title/Summary/Keyword: Bending Loads

Search Result 715, Processing Time 0.025 seconds

A Simplified Approach to the Analysis of the Ultimate Compressive Strength of Welded Stiffened Plates (용접된 보강판의 압축 최종 강도의 간이 해석법)

  • C.D. Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 1993
  • In this paper, a method to calculate the ultimate compressive strength of welded one-sided stiffened plates simply supported along all edges is proposed. At first initial imperfections such as distortions and residual stresses due to welding are predicted by using simplified methods. Then, the collapse modes of the stiffened plate are assumed and collapse loads for each mode are calculated. Among these loads, the lowest value is selected as the ultimate strength of the plate. Collapse modes are assumed as follows ; (1) Overall buckling of the stiffened plate$\rightarrow$Overall collapse due to stiffener bending (2) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener yielding (3) Local buckling of the plate part$\rightarrow$Overall collapse due to stiffener berthing (4) Local buckling of the plate part$\rightarrow$Local collapse of the plate part$\rightarrow$Overall collapse due to stiffener tripping. The elastic large deflection analysis based on the Rayleigh-Ritz method is carried out, and plastic analysis assuming hinge lines is also carried out. Collapse load is defined as the cross point of the two analysis curves. This method enables the utimate strength to be calculated with small computing time and a good accuracy. Using the present method, characteristics of the stiffener including torsional rigidity, bending and tripping can also be clarified.

  • PDF

The Evaluation of flexure performance of SCP modules for LNG outer tank (LNG 외조탱크 적용을 위한 SCP 모듈의 휨성능 평가)

  • Park, Jung-Jun;Park, Gi-Joon;Kim, Sung-Wook;Kim, Eon;Shin, Dongkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.447-455
    • /
    • 2019
  • When constructing LNG storage structures using the cast-in-place method in extreme areas, the construction cost and time may be increased due to the poor working environments and conditions. Therefore, demand for modular energy storage tanks is increasing. In this study, we propose using an SCP module as an alternative for lighter-weight LNG storage tanks. The purpose of this study is to evaluate the feasibility of LNG storage outer tanks by performing bending tests on the thickness of composite steel plate concrete under field conditions. The loads on specimens with thicknesses of 100 mm and 200 mm were linearly increased to the design final loads of 413 kN and 822 kN, respectively. The slope was rapidly changed, and fracture occurred. The two test conditions showed linear behavior until the steel plate yielded, and after an extreme load behavior, sudden yielding of the steel plate yield occurred in the SCP bending test according to the INCA guidelines. The results satisfied the design flexural load and showed the possibility of using the specimens in a modular LNG outer tank. However, it is necessary to evaluate the structural performance of the SCP by performing compression and shear tests in future research.

Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading (준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測))

  • Paik, Jeom-K.;Shin, Byung-C.;Kim, Chang-Y.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-93
    • /
    • 1989
  • The present study attempts to develop the theoretical model for the damage estimation of offshore tubular members which are subjected to the accidental impact loads due to collision, falling objects and so on. For the reasons of the simplicity of the problem being considered, however, this paper postulates that the accidental load can be approximated to be the quasi-static one, in which dynamic effects are negelcted. Based upon the theoretical and experimental results which are obtained from the present study as well as the existing literature, the load-displacement relations taking the interaction effect between the local denting and the global bending deformation into account are presented in the explicit form when the concentrated lateral load acts on the tubular member whose end condition is supposed to be rotation ally free and axially restrained, in which membrane forces develop. Thus, the practical estimation of damage deformation for the local denting and the global bending damage of tubular members against the accidental loads is possible and also the collision absorption capability of the member can be calculated by performing the integration of the area below the given load-displacement curves, provided that all the energy is dissipated to the deforming the member itself.

  • PDF

Mechanical Evaluation of Posterior Dynamic Omega-wire Stabilization System (후방 요추 극돌기간 유동적 오메가형 스프링 고정재의 역학적 평가)

  • Lee, Yeon-Soo;Song, Geun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1099-1104
    • /
    • 2012
  • The study investigates the mechanical deformation of a newly developed screwless omega-wire dynamic system for stabilization of the spine. The omega-wire spring stabilization system was tested under tension, compression, and dynamic compressive fatigue loads. In addition, its bending deformation was compared to that of a spiral-wire spring system using FEA. A model whose hanger inter-center distance is 60 mm showed an ultimate tensile stress of 3981.7 N at a displacement of 3.61 mm and an ultimate compressive load of 535.6 N at a displacement of 2.16 mm. Under fatigue loading of 5 Hz with 10 N/1 N, it did not show any failure over 5 million cycles, and the displacement was restricted to 8-9 mm. In the FEA, the omega-wire spring system showed more flexible bending features than did the spiral-wire spring system.

Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams (철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가)

  • Kim, Ho Soo;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.373-383
    • /
    • 2006
  • In a steel structural system, noncomposite form deck one-way slab is the plate element supported by four-edged steel beams with unequaled stiffness. However, design criterion has analyzed the one-way slab as the continuous beam. Because the end beams that support the one-way slab have elastic supports t hat cause different deflections according to the support conditions and locations, the bending moments corresponding to the support ic support effect is not considered in the design criterion. Accordingly, to conduct a reasonable estimation of approximate moment coefficients considering the unequaled elastic support conditions, this study analyzes and estimates various models with varia bles for the ratios of live load to dead load and pattern arangements of live loads and span lengths. The analytical methods considering the finite three-dimensional plate element, the two-dimensional elastic support and the infinite stifnes suport are performed.

Analysis on the Sliding Load for Hign-Tension Bolt Joint of the H-Beam in Pure Bending (Pure Bending이 작용하는 H-Beam의 도입축력 변화에 따른 고장력볼트 연결부 거동 분석)

  • Kim, Chun-Ho;Kim, Sang-Hoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.541-544
    • /
    • 2006
  • Currently the bolt joint defect occurs from the steel bridge which is in the process of using but that investigation about each kind defect is lacking state. Research to see consequently the high strength bolt joint sliding conduct bring the model it used a structural analysis program LUSAS numerical analysis execution and a plan for Steel Box Girder Bridge copying full-size H-Beam and plan pretensioned bolt force 100%. 75%, 50% and 25% pretensioned force it acted in standard. And a hold an examination, against the sliding loads which it follows in the pretensioned force it will analysis.

  • PDF

Biomechanical Study of Lumbar Spinal Arthroplasty with a Semi-Constrained Artificial Disc (Activ L) in the Human Cadaveric Spine

  • Ha, Sung-Kon;Kim, Se-Hoon;Kim, Daniel H.;Park, Jung-Yul;Lim, Dong-Jun;Lee, Sang-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.3
    • /
    • pp.169-175
    • /
    • 2009
  • Objective : The goal of this study was to evaluate the biomechanical features of human cadaveric spines implanted with the Activ L prosthesis. Methods : Five cadaveric human lumbosacral spines (L2-S2) were tested for different motion modes, i.e. extension and flexion, right and left lateral bending and rotation. Baseline measurements of the range of motion (ROM), disc pressure (DP), and facet strain (FS) were performed in six modes of motion by applying loads up to 8 Nm, with a loading rate of 0.3 Nm/second. A constant 400 N axial follower preload was applied throughout the loading. After the Activ L was implanted at the L4-L5 disc space, measurements were repeated in the same manner. Results : The Activ L arthroplasty showed statistically significant decrease of ROM during rotation, increase of ROM during flexion and lateral bending at the operative segment and increase of ROM at the inferior segment during flexion. The DP of the superior disc of the operative site was comparable to those of intact spine and the DP of the inferior disc decreased in all motion modes, but these were not statistically significant. For FS, statistically significant decrease was detected at the operative facet during flexion and at the inferior facet during rotation. Conclusion : In vitro physiologic preload setting, the Activ L arthroplasty showed less restoration of ROM at the operative and adjacent levels as compared with intact spine. However, results of this study revealed that there are several possible theoretical useful results to reduce the incidence of adjacent segment disease.

A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching (진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구)

  • Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

State Evaluation of Nutrient Removal in an Intermittent Aeration Process by Monitoring ORP & pH (ORP와 pH 측정에 의한 간헐폭기 고도처리 공정 제어의 평가)

  • Ko, Kwang Baik;Suh, Jun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.401-409
    • /
    • 2002
  • In this study, to evaluate the applicability of ORP and pH as process control parameters for an intermittent aeration process, a 200L/d bench-scale plant was installed and operated for 90 days. It was fed with synthetic wastewater which contained $COD_{Cr}$ : 400mg/L, TN : 40mg/L and TP : 7mg/L. ORP & pH were measured on-line and compared with the variation of nutrient concentrations. As the results, both of the ORP and pH were able to monitor successfully nitrification and denitrification. Bending-points on the ORP curve and peak points on the pH curve corresponded to the termination of nitrification and denitrification. For P uptake and release, pH was the best indicator for performance evaluation. The aerobic pH apex was appeared when P uptake was accomplished and there was a relationship between the P release and pH variation. But the pH curve needed filtering because there were many noises on it. In this study, the shape of the ORP & pH curves were varied as the operating conditions such as aeration rates and organic loads were changed. It allowed the operating states of biological systems to be effectively evaluated. If it is properly managed to show the bending points and peak points clearly, the on-line monitoring of ORP & pH will be a reliable and effective technique for process control of intermittent aeration processes.

Flexural behaviour of reinforced low-strength concrete beams strengthened with CFRP plates

  • Boukhezar, Mohcene;Samai, Mohamed Laid;Mesbah, Habib Abdelhak;Houari, Hacene
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.819-838
    • /
    • 2013
  • This paper summarises the results of an experimental study to investigate the flexural behaviour of reinforced concrete beams strengthened using carbon-fibre reinforced polymer (CFRP) laminate in four-point bending. The experimental parameters included are the reinforcing bar ratio ${\rho}_s$ and preload level. Four bar ratios were selected (${\rho}_s=0.13$ to 0.86%), representing the section of two longitudinal tensile reinforcements, with diameters of 8, 14, 16, and 20 mm in order to reveal the effect of bar ratio on failure load and failure mode. Eight beams that could be considered "full-scale" in size, measuring 200 mm in width, 400 mm in total height and 2300 mm in length, were tested. Three beams were selected with different bar ratios (${\rho}_1$, ${\rho}_2$, ${\rho}_3$), and considered as control specimens (without ), while three other beams identical to the control beams with the same CFRP laminates ratio and a seventh beam with ${\rho}_{min}$ (the lowest bar ratio) were also used. In the second part of the study, two beams with the bar ratio ${\rho}_2$ were preloaded at two levels, 50 and 100% of their ultimate loads, and then repaired. This experimental investigation was consolidated using an analytical model. The experimental and analytical results indicate that the flexional capacity and stiffness of strengthened and repaired beams using CFRP laminate were increased compared to those of control beams, and the behaviour of repaired beams was nearly similar to the undamaged and strengthened beams; unlike the ductility of strengthened beams, which was greatly reduced compared to the control.