• Title/Summary/Keyword: Bending Energy

Search Result 874, Processing Time 0.024 seconds

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Analytical study of elastic lateral-torsional buckling of castellated steel beams under combined axial and bending loads

  • Saoula Abdelkader;Abdelrahmane B. Benyamina;Meftah Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.343-356
    • /
    • 2024
  • This paper presents an analytical solution for correctly predicting the Lateral-Torsional Buckling critical moment of simply supported castellated beams, the solution covers uniformly distributed loads combined with compressive loads. For this purpose, the castellated beam section with hexagonal-type perforation is treated as an arrangement of double "T" sections, composed of an upper T section and a lower T section. The castellated beam with regular openings is considered as a periodic repeating structure of unit cells. According to the kinematic model, the energy principle is applied in the context of geometric nonlinearity and the linear elastic behavior of materials. The differential equilibrium equations are established using Galerkin's method and the tangential stiffness matrix is calculated to determine the critical lateral torsional buckling loads. A Finite Element simulation using ABAQUS software is performed to verify the accuracy of the suggested analytical solution, each castellated beam is modelled with appropriate sizes meshes by thin shell elements S8R, the chosen element has 8 nodes and six degrees of freedom per node, including five integration points through the thickness, the Lanczos eigen-solver of ABAQUS was used to conduct elastic buckling analysis. It has been demonstrated that the proposed analytical solution results are in good agreement with those of the finite element method. A parametric study involving geometric and mechanical parameters is carried out, the intensity of the compressive load is also included. In comparison with the linear solution, it has been found that the linear stability underestimates the lateral buckling resistance. It has been confirmed that when high axial loads are applied, an impressive reduction in critical loads has been observed. It can be concluded that the obtained analytical solution is efficient and simple, and offers a rapid and direct method for estimating the lateral torsional buckling critical moment of simply supported castellated beams.

Suitable Conditions of Producing the LVL from Pitch Pine and its Paint Film Durability (리기다소나무 단판적층재(單板積層材)의 제조조건(製造條件)에 따른 물리적성질(物理的性質) 및 도장성능(塗裝性能))

  • Park, Sang-Bum;Kong, Young-To;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.3-11
    • /
    • 1989
  • This study was carried out to investigate the physical and mechanical properties. durability of adhesive bond and paint film for the basic data which were required to determine the suitability as a raw material for furniture the laminated veneer lumber (LVL) with pitch pine (Pinus rigida Mill). The results obtained were as follows; 1) The proper pressing time for making the LVL was over 45 second per milimeter of LVL thickness. 2) The bending strength of the LVL was lower than that of the solid wood but the compressive strength of the LVL was similar to that of the solid wood. The strength increased with the decrease of veneer thickness. 3) The impact bending absorbed energy of the LVL was 0 to 0.3 kg.m/$cm^2$ in the direction of parallel to the grain. The energy of the LVL was lower than that of the solid wood (0.68 kg.m/$cm^2$). 4) In warm water soaking and cold-dry tests, delamination of adhered layers surface crack, swelling, and color change were not found when the hot pressing time was over 45 second per milimeter of LVL thickness. As a result of soak under vacuum test shrinkage in the direction of parallel to the grain was about -1.0 percent and. was about 3.0 percent in the direction of the perpendicular to the grain. 6) The film cacks on the LVL's surface after the wet and cold-dry test were not found at all. 7) In the use of the LVL for interior decoration it was considered that the surface of the LVL be overlaid crossly with fancy veneers of birch and paulownia, etc. This cross overlayirg methods have resulted in few cracks on the fancy veneer.

  • PDF

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.

Microwave hybrid sintering of NTC themistor (마이크로파 하이브리드 소결법에 의한 NTC 서미스터의 제조)

  • 최영락;안진용;안주삼;백동규;최승철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.508-512
    • /
    • 1998
  • The NTC thermistors were sintered by using microwave hybrid heating method at $1100^{\circ}C$~$1300^{\circ}C$ and those electrical properties were investigated. The obtained $B_{25^{\circ}C/85^{\circ}C}$ values from temperature dependence of electrical resisitivity were around 3100~3200 K which were almost the same values as conventionally sintered ones. Compared with conventional sintering process, this process could complete whole sintering process within 20 minutes. This the processing time and energy consumption could be reduced through this rapid heating by using microwave hybrid heating.t there were showed only two peaks, glycolide melting peak and lower molecular weight melting peak without lauryl alcohol. Conversion increased slowly with the reaction time up to 50 minutes, and then gave a sudden increase above that. The reaction time to disappear in glycolide melting peak during polymerization was shortened with the increase of lauryl alcohol content. Zero-shear viscosity of polyglycolic acid decreased with the increase of free acid content in glycolide.ssional energy and bending hysteresis increased. \circled3 Surface characteristics such as friction coefficient and thickness variation of highly shrinkage fabrics became relatively roughened state. \circled4 Since stiffened and roughened characteristics of highly shrinkage fabrics, drapabilities of them were significantly lowered. Additionally thermal insulation property of high shrinkage fabric was higher than that of low shrinkage fabric due to bulky and thickened feature. From the results, it is considered that the silk fabrics with high filling shrinkage have the good bulkiness and heat keeping properties and thus they have the suitable characteristics for high quality men's and women's formal garments.

  • PDF

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

Lateral Behavior of Single Rigid Driven Pile in Non-Homogeneous Sand (비균질 지반에서 항타 관입한 단일 강성말뚝의 수평거동 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.167-185
    • /
    • 1999
  • A series of model tests was performed to find the characteristics of lateral behavior of single rigid pile. This paper shows the results of model tests on the lateral behavior of single rigid driven pile in non-homogeneous(two layered) Nak-Dong River sands. The purpose of this paper is to investigate the effect of the ratio of lower layer thickness to embedded pile length, the coefficient ratio of the subgrade reaction and the pile construction conditions(driven & embedded piles) on the characteristics of lateral behavior of single pile. The results of model tests show that the lateral behavior in non-homogeneous soil depends upon drop energy considerably, that is, in the case of H/L=0.75, as the drop energy increases three times the decrease percentage increases about 2.12 times. In the driven pile with non-homogeneous soil of $E_{h1}/E_{h2}=5.56$, the effect of upper layer with large stiffness on the decrease of lateral deflection is remarkably smaller than embedded pile. In non-homogeneous soil, the maximum bending moment of driven pile is in the range of 100 132% in comparison with embedded pile. The reason is that the stiffness of soil around pile increases with drop vibration and so the pile behavior is similar to the flexible pile behavior by means of the increase of relative stiffness of pile, In this paper, the experimental equations for lateral load and H/L on $y_D/y_E \; & \; MBM_D/MBM_E$ are suggested from model tests.

  • PDF