• Title/Summary/Keyword: Bending

Search Result 8,619, Processing Time 0.029 seconds

Clinical outcomes of bending versus non-bending of the plate hook in acromioclavicular joint dislocation

  • Joo, Min Su;Kwon, Hoi Young;Kim, Jeong Woo
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Background: We aimed to assess the effect of plate hook bending in treatment of acromioclavicular (AC) dislocation by analyzing clinical and radiological results according to the angle of the plate hook (APH). Methods: This was a retrospective, observational, case-control study including 76 patients with acute AC joint dislocation that were divided into two groups according to treatment with bent or unbent plate hook. The visual analog scale (VAS), the American Shoulder and Elbow Surgeons (ASES) shoulder score, and range of motion (ROM) were evaluated as clinical outcomes. Comparative coracoclavicular distance (CCD) was measured to evaluate radiological outcomes. Results: While the VAS and ASES of the bending group at 4 months after surgery were significantly higher (p=0.021 and p=0.019), the VAS and ASES of the bending group at other periods and ROM of the bending group showed no significant difference. The initial CCD decreased from 183.2%±25.4% to 114.3%±18.9% at the final follow-up in the bending group and decreased from 188.2%±34.4% to 119.1%±16.7% in the non-bending group, with no statistical difference (p=0.613). The changes between the initial and post-metal removal CCD were 60.2%±11.2% and 57.3%±10.4%, respectively, with no statistical difference (p=0.241). The non-bending group showed greater subacromial osteolysis (odds ratio, 3.87). Pearson's coefficients for the correlation between APH and VAS at 4 months after surgery and for that between APH and ASES at 4 months after surgery were 0.74 and -0.63 (p=0.027 and p=0.032), respectively. Conclusions: The APH was associated with improved postoperative pain and clinical outcomes before implant removal and with reduced complications; therefore, plate hook bending is more useful clinically during plate implantation.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steel Sheets (저탄소강판을 이용한 굽힘 가공에서 발생하는 꺽임현상에 대한 발생 기구 해석)

  • Park, K.C.;Yoon, J.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.336-339
    • /
    • 2007
  • In order to investigate the cause of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was due to the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in $0.5{\sim}0.6t$ sheet in $15{\sim}20mm$ radius bending.

  • PDF

2-Dimensional Finite Element Analysis of Forming Processes of Automotive Panels Considering Bending Effects (굽힘 효과를 고려한 자동차 패널 성형 공정의 2차원 유한 요소 해석)

  • 김준보;금영탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.27-38
    • /
    • 1996
  • A two-dimensional FEM program, which considers bending effects in the membrane fromulation, was developed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die of automotive panels. For the evaluation of bending effects with membrane elements, the bending equivalent forces and stiffnesses are calculated from the bending moment computed using the changes in curvature of the formed shape of two membrane ones. The curves depicted with 3 nodes are described by a circle, a quadratic equation, and a cubic equation, respectively, and in the simulation of the stretch/draw sections of an automotive inner panel, three different description results are compared each other. Also, the bending results are compared with membrane results and measurements in order to verify the validity of the developed program.

  • PDF

Sectional forming analysis by membrane finite elements considering bending effects (굽힘효과를 고려한 박막 유한요소에 의한 단면 성형해석)

  • Kim, Jun-Bo;Lee, Gwang-Byeong;Keum, Yeong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.493-503
    • /
    • 1998
  • The sectional forming analysis considering bending effects from the geometrically deformed shape of two linear membrane finite elements(called super element) was performed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the changes in the interior angle at the middle node of super element, and are agumented to the membrane stretch forces. In order to verify the validity of the bending formulation, the simulation results for the stretch, draw, and bend sections were compared with membrane analysis results and measurements.

Center Pillar Design for High Bending Collapse Performance (굽힘 붕괴 성능 향상을 위한 센터 필라 설계)

  • Kang, Sungjong;Park, Myeongjae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.128-134
    • /
    • 2013
  • High bending collapse performance (maximum resistance force and mean resistance force) of body center pillar is an important design target for vehicle safety against side impact. In this study, effect of the upper section shape and the thickness of outer reinforcement on bending collapse performance was investigated for the center pillar of a large passenger car. First, through bending collapse analyses using simple models with uniform section, an optimized center pillar upper section was chosen. Next, bending collapse performance for various models of the actual center pillar with changing the thickness of outer reinforcement were analyzed. The finally designed model showed distinctive enhancement in bending collapse performance nearly without weight increase.

An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending (순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

A Study on the Development of the Continuous 3D Tube Bending Machine (연속 3 차원 튜브 벤딩장치 개발에 관한 연구)

  • Mun, Hyeon-Jun;Kim, Chung-Sup;Kim, Jong-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.701-706
    • /
    • 2008
  • A continuous 3D tube bending machine has been developed for industrial boiler panel production. The machine consists of a main bender, a sub bender, a side bender, tube feeding rollers and control system that includes data management system. Tube position is controlled by a numerical control system. The bending former can be easily replaced according to the shape of bending form. Reduction of working time and improvement of production capacity from the practice have been achieved by bending a long tube in the machine developed.

Ultimate Transverse Bending Strength Analysis of a SWATH Ship (SWATH선의 최종 횡굽힘강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Estimation of Plastic Bending Moment of Offshore Pipelines (해저관로의 대변형 굽힘에 의한 소성 모멘트 추정)

  • 이종현;최한석;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.21-26
    • /
    • 2003
  • The reel-lay method of submarine pipelines a continuous string of pipe coiled onto a reel. Assembly of this pipe that is string is accomplished onshore by welding, and nondestructive testing is carried out prior to coiling the pipe. The total length of pipes on the reel depends on the reel and pipe diameters. Pipeline installation is accomplished by uncoiling, straightening the pipe, and laying out the pipe string onto the seabed as the barge moves forward. Installation associated with coiling and uncoiling is related to the bending moment and strain relationship of the pipeline, A highgrade pipe material is required when the reel-lay method is used. This paper is concerned with the highly plastic bending moment of the pipeline, including the effect of ovality. Moment calculation in the pipe is accomplished by the numerical method, including the variable ovalities during the plastic bending of the pipe string. The new calculation method of the high plastic bending moment was applied to the reel-lay method.