• 제목/요약/키워드: Belt Force

검색결과 115건 처리시간 0.019초

단일원형비드 및 환저비드의 인출 특성에 관한 연구 (Restraining Characteristics for Single Circular and Round Drawbead)

  • 김창만;임영석;이항수;전기찬;서대교
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.454-467
    • /
    • 1994
  • The drawbead restraining forces for the various radius of drawbead and die corner are analyzed by the belt theory, and they are compared with the experimental results. During this procedure, the drawing angles are also varied from $0^{\circ}$ to $60^{\circ}$, and the near part of the drawed die corner are divided into fur steps for the theoretical analysis. The stress distributions through the sheet thickness for these steps are also suggested theoretically. The wide range of experimental data of the drawing forces and strain distributions for the various dimension and blank holding forces are presented. It is concluded that the theoretical assumption for the restraining force analysis is very useful from the comparison with the experimental results.

  • PDF

평판 철심가동형 LOA의 특성해석 및 정특성 시험 (Characteristic Analysis and Static Tests of a Flat Moving Core Type LOA)

  • 장석명;정상섭;정종민;김형규;우종섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.52-54
    • /
    • 1998
  • LOA is the linear electromechanical device that mover is similar to secondary conductor of LIM. The mover reciprocates along stroke by supplying the alternating current to primary coil. LOA is the simpler and more efficient than other linear apparatus using the rotary motor because LOA produce the thrust force without any mechanical converter such as cam, clutch, belt, rack and pinion, etc. This paper deals with the static characteristics of moving coil type LOA by virtual work method, FEM analysis and experiment Results show that thrust force increases when mover travels form center to both ends.

  • PDF

Subsurface Structure of the Yeongdong Basin by Analyzing Aeromagnetic and Gravity Data

  • Kim, Kyung-Jin;Kwon, Byung-Doo
    • 한국지구과학회지
    • /
    • 제23권1호
    • /
    • pp.87-96
    • /
    • 2002
  • Aeromagnetic and gravity data were analyzed to delineate the subsurface structure of the Yeongdong basin and its related fault movement in the Okcheon fold belt. The aeromagnetic data of the total intensity (KIGAM, 1983) were reduced to the pole and three dimensional inverse modeling, which considers topography of the survey area in the modeling process, were carried out. The apparent susceptibility map obtained by three dimensional magnetic inversion, as well as the observed aeromagnetic anomaly itself, show clearly the gross structural trend of the Yeongdong basin in the direction on between $N30^{\circ}E$ and $N45^{\circ}E$. Gravity survey was carried out along the profile, of which the length is about 18.2 km across the basin. Maximum relative Bouguer anomaly is about 7 mgals. Both forward and inverse modeling were also carried out for gravity analysis. The magnetic and gravity results show that the Yeongdong basin is developed by the force which had created the NE-SW trending the magnetic anomalies. The susceptibility contrast around Yeongdong fault is apparent, and the southeastern boundary of the basin is clearly defined. The basement depth of the basin appears to be about 1.1 km beneath the sea level, and the width of the basin is estimated to be 7 km based on the simultaneous analysis of gravity and magnetic profiles. There exists an unconformity between the sedimentary rocks and the gneiss at the southeastern boundary, which is the Yeongdong fault, and granodiorite is intruded at the northwestern boundary of the basin. Our results of gravity and magnetic data analysis support that the Yeongdong basin is a pull-apart basin formed by the left-stepping sinistral strike-slip fault, which formed the Okcheon fold belt.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.

각 접촉 볼베어링 스핀들의 회전정밀도 분석 (Rotating Accuracy Analysis for Spindle with Angular Contact Ball Bearings)

  • 황주호;김정환;심종엽
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.735-739
    • /
    • 2013
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Spindle motion errors such as three translational motions and two rotational motions are undesirable. These are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, and external force or unbalance of rotors. The error motions of the spindle need to be reduced for achieving the desired performance. Therefore, the level of error motion needs to be estimated during the design and assembly process of the spindle. In this study, an estimation method for five degree-of-freedom (5 DOF) error motions for a spindle with an angular contact ball bearing is suggested. To estimate the error motions of the spindle, the waviness of the inner-race of bearings and an external force model were used as input data. The estimation model considers the geometric relationship and force equilibrium of the five DOFs. To calculate the error motions of the spindle, not only the imperfections of the shaft and bearings but also driving elements such as belt pulley and direct driving motor systems are considered.

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

대량 맞춤 생산을 위한 공군 동약정복 바지 패턴 제도법 및 자동 제도 프로그램 개발 (Development of Air Force Winter Service Uniform Slacks Pattern and Automatic Pattern Drafting Program for Mass Customization)

  • 김인화;남윤자;김성민
    • 한국의류산업학회지
    • /
    • 제15권2호
    • /
    • pp.256-267
    • /
    • 2013
  • This study is conducted to improve the fitness of Air Force winter service uniforms pants through the development of a pants pattern drafting method and automatic pattern drafting program for mass customization. The initial study pattern drafting method is formed through an analyses of 4 kinds of conventional pants pattern drafting methods for education and 3 kinds of conventional pants patterns of Air Force apparels. The initial study pattern drafting method is converted into the final study pattern drafting method after twice conducting a wearing test. To verify the final study pants pattern, a motion adaptability evaluation, an ease amount evaluation and an appearance evaluation are conducted. The results of the final study patterns were better than conventional winter service uniforms in the motion adaptability evaluation and the appearance evaluation. However, the results show similar values between the final study patterns and conventional winter service uniform patterns in the ease amount evaluation. An automatic pattern drafting program was developed based on the final study pattern drafting method. The program allowed the achievement of customized pants patterns through the placement of customer body sizes into the size input window. It also provided two kinds of ease amount and two kinds of waist belt level options.

정상보행시 체중심의 수직 가속도 특성 (Characteristics of Vertical Acceleration at Center of Mass of the Body in Normal Gait)

  • 이진복;강성재;김영호
    • 한국전문물리치료학회지
    • /
    • 제9권3호
    • /
    • pp.39-46
    • /
    • 2002
  • In this study, vertical acceleration of center of mass was observed along normal gait phases in 9 healthy male volunteers (aged $25.7{\pm}2.18$). The developed wireless accelerometric device was attached on the intervertebral space between L3 and L4 using a semi-elastic waist belt. A three-dimensional motion analysis system, synchronized with the accelerometry, was used for detecting gait phases. There was no significant correlation between the body weight and the acceleration. The first peak curve covered loading response phase. The second downward peak point was matched accurately with the opposite toe-off. In mid-stance and terminal stance, the acceleration curve highly resembled the vertical ground reaction force curve. There was no significant difference in timing between the final upward peak point and the initial contact. Therefore, the developed accelerometry system would be helpful in determining determine temporal gait pattems in patients with gait disorders.

  • PDF

저가 수중 무인 이동체 개발 및 운동성능 검증 (Development of a Low-cost Unmanned Underwater Vehicle and Performance Verification)

  • 황동욱;장민규;김진현
    • 로봇학회논문지
    • /
    • 제13권2호
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, a high performance underwater vehicle which can be manufactured at low cost is designed and fabricated, and its performance is verified through experiments. To improve efficiency, the Myring equation is used to design the appearance and the duct structure including the thruster is planned to increase the propulsion efficiency while reducing the drag force. Through various methods, it is secured stable waterproof performance, and also is devised to have high speed movement and turning performance. The developed underwater vehicle is equipped with a high output BLDC motor to achieve a linear speed of up to 2 m/s and can change direction rapidly with stability through four rudders. The rudders are driven by coupling a timing belt and a pulley by extending the axis of a servo motor, and are equipped at the end of the body to turn heading. In addition, for stable posture control, the roll keeps its internal center of gravity low and maintains its stability due to restoring force. By controlling the four rudders, pitch and yaw are handled by the PID controller and show stable performance. To investigate the horizontal turning performance, it is confirmed that the yaw rate controller is designed and stable yaw rate control is performed.