• Title/Summary/Keyword: Bell Mode

Search Result 38, Processing Time 0.022 seconds

Beat Control Using an Equivalent Ring Model (등가 종 모델을 이용한 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Joonghyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.516-519
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

  • PDF

A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method (유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구)

  • 정석주
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

Beat Period Tuning Method Using an Equivalent Bell Model (등가 종 모델을 이용한 맥놀이 주기 조절법)

  • Kim, Seock-Hyun;Lee, Joong-Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.561-568
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

Beat Map Drawing Method for a Large Size Bell using ODS (ODS를 이용한 대형종의 맥놀이 지도 작성법)

  • Park, In-Seok;Lee, Jung-Hyeok;Park, Sun-Mi;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.929-932
    • /
    • 2012
  • Beat map shows the distribution property of the beating sound in the bell structure. Using the beat map, beat control and beat estimation are available. To draw the beat map, mode pair parameters of the bell are required. However, in case of large bell which is struck by a heavy wooden hammer, it is very difficult to measure the excitation force and to obtain the mode pair parameters. In this paper, we determined the mode pair parameters of the bell from the transmissibility between the roving signal and reference signal, using ODS(operational deflection shape) method. The mode pair data are input to the theoretical model of the beat response and beating waves are generated on the bell circumference. All the numerical and beat map drawing procedures are automatized using Matlab. Finally, the reliability of the beat map generated by the program is verified.

  • PDF

Beat Map of King Song-Dok Bell (성덕대왕신종의 맥놀이 지도)

  • Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.1-353
    • /
    • 2002
  • Impulse response of a slightly asymmetric cylindrical shell is derived. Receptance method is applied to obtain the vibration mode and natural frequency of the slightly asymmetric cylindrical shell. Impulse response model is used to identify the vibration beat characteristics of King Song-Dok Bell. The theretical mode is compared and verified by the measured mode of King Song-Dok Bell. (omitted)

  • PDF

Vibration and Sound Characteristics of King Song-Dok Bell (성덕대왕신종의 진동 및 음향 특성)

  • 김정헌;정지덕;이장무;김석현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1161-1168
    • /
    • 2002
  • Vibration and sound characteristics of King Song-Dok Bell are measured and the modal property is investigated. The effect of striking position and modal property on the beat characteristics is examined. It is first found that the beat characteristics are quite different according to the position on the bell surface and clear beat is periodically generated on the circumference. It turns out that in King Song-Dok Bell, striking Dangjwa(the present striking position) makes a beat in the first vibration mode, as well as it produces very clear beat in the second vibration mode.

  • PDF

성덕대왕신종의 진동 및 음향 특성

  • 김석현;김정헌;정지덕;이장무
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.534-541
    • /
    • 2002
  • Vibration and sound characteristics of King Song-Dok Bell are ivesigated. Natural frequencies. vibration modes and beat period of the bell are precisely measured. The effect of striking position and the position of nodal lines on the beat characteristics is examined. It is first found that the beat characteristics are quote different according to the position on the bell surface and clear beat is periodically generated on the circumference. It turns out that in King Song-Dok Bell, Dangjwa(the present striking position) is located at the position which makes a beat in the first vibration mode, as welt as it produces very clear beat In the second vibration mode.

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

Beat Clarity Tuning Using an Equivalent Bell (등가 종을 이용한 맥놀이 선명성 조절)

  • Lee, Joong Hyeok;Kim, Seock Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.854-855
    • /
    • 2013
  • As an unique acoustic characteristic of a Korean bell. beat phenomenon is a periodic repetition of strong and weak sounds. Beat sounds good when it is clear and it has a proper period, however, it is not easy to satisfy these two conditions simultaneously. In this study, we propose a beat tuning method to satisfy these two conditions, by using an equivalent bell model. First, we construct an equivalent bell which has the same beat property with the 1st beat of a real bell and we investigate the change of mode pair by finite element analysis, when thickness of the bell is locally decreased at $22.5^{\circ}$ from the striking point. From the analysis result, minimum thickness reduction amount is determined to make a clear and strong beat.

  • PDF

Beat control method of Korean bells using artificial dumshoi (인공 덤쇠를 이용한 한국종의 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Jae Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.192-200
    • /
    • 2021
  • Korean bell is a macroscopically axi-symmetrical structure, but has a slight asymmetry due to complex patterns and casting irregularity. Small asymmetry separates one vibration mode into a mode pair with slight frequency difference. The mode pair interferes and creates a beat. The vivid beat with an appropriate period makes the bell sound magnificent and lively feeling. In this study, we propose a method to make the vivid beat using artificial dumshoi. This method creates the vivid beat by designing artificial dumshoi that overwhelms the bell asymmetry. To this end, the asymmetry of Korean bell is quantified by analyzing the beat period data of a number of Korean bells cast in modern times. Based on the measured beat period data, the magnitude of asymmetry is quantified using an equivalent bell model and artificial dumshoi is applied. The movement of mode pair by dumshoi is predicted through finite element analysis. Finally, a design example of the artificial dumshoi for clear beat is introduced.