The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.3
/
pp.1-17
/
2022
Accurate analysis of the causes of metro rail traffic congestion provides a means of addressing issues arising from metro rail traffic congestion in metropolitan areas. Currently, congestion analysis based on counting, weight detection, CCTVs, and mobile Wi-Fi is limited by poor accuracies or because studies have been restricted to single routes and trains. In this study, a train congestion analysis model was used that includes the transfer and multi-path behavior of metro passengers and train operation plans for metropolitan urban railroads. Analysis accuracy was improved by considering traffic patterns in which passengers must wait for next trains due to overcrowding. The model updates train crowding levels every 10 minutes, provides information to potential passengers, and thus, is expected to increase the social benefits provided by the Seoul metropolitan subway
Journal of the Korean Society of Industry Convergence
/
v.26
no.1
/
pp.113-119
/
2023
In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.
Background: This study was conducted to analyze the time for re-detection of bacteria after surface disinfection using wet wipes, isopropyl alcohol, and benzalkonium chloride antibacterial tissue and provide standards for re-execution of surface disinfection with wet and antibacterial tissues. Methods: Seven laptops were wiped with wet tissue and isopropyl alcohol and benzalkonium chloride antibacterial tissues. Test areas were rubbed with a sterile cotton swab at baseline and after 30, 60, and 120 min. After plating on a tryptic soy agar medium, the number of colonies was counted by culturing at 36.5℃ for 24 h. Results: The average number of bacterial colonies was 5.85 ± 4.33 before isopropyl alcohol wiping and nil after wiping. The average number of bacterial colonies was 12.28 ± 14.67 benzalkonium chloride wiping and nil after wiping. Before wiping with wet wipes, the average number of bacterial colonies on laptop surfaces was 3.42 ± 5.22. Bacteria decreased after wiping with wet wipes but increased again over time. Conclusions: Wet wipes can temporarily reduce bacteria but are unsuitable for removing bacteria.
Purpose: The purpose of this study was to identify the experiences of depression, suicidal thoughts, and habitual drug use in middle and high school students and examine their relationship with the oral symptoms experiences. Methods: The participants of this study were 54,948 middle and high school students who took the screening and health survey at the 16th "Youth Health Behavior Survey" (2020). The SPSS statistical software (IBM SPSS 23.0 for Windows; IBM) was used for data analysis. The significance level was set to 0.05. Results: Complex-sample logistic regression analysis was performed to confirm the relationship between the experiences of depression, suicidal thoughts, and habitual drug use and oral symptom experienced. The results indicated that the absence of depression, suicidal thoughts, or habitual drugs had a significant effect on oral symptom experience. Conclusion: A systematic counseling program for early detection of oral symptoms and oral health promotion as well as strategies for practicing correct oral hygiene are required. Additionally, it is necessary to develop a customized education program to promote health education in middle and high school students. It can be used as the basis for an integrated support system that students can use to grow healthy. A differentiated program on the topic of mental health promotion for each grade can be planned and its effects can be monitored.
Oh, Ji Heon;Ryu, Ga Hyun;Park, Na Hyeon;Anazco, Edwin Valarezo;Lopez, Patricio Rivera;Won, Da Seul;Jeong, Jin Gyun;Chang, Yun Jung;Kim, Tae-Seong
Annual Conference of KIPS
/
2020.11a
/
pp.854-857
/
2020
최근 사람형(Anthropomorphic)로봇손의 사물조작 지능을 개발하기 위하여 행동복제(Behavior Cloning) Deep Reinforcement Learning(DRL) 연구가 진행중이다. 자유도(Degree of Freedom, DOF)가 높은 사람형 로봇손의 학습 문제점을 개선하기 위하여, 행동 복제를 통한 Human Demonstration Augmented(DA)강화 학습을 통하여 사람처럼 사물을 조작하는 지능을 학습시킬 수 있다. 그러나 사물 조작에 있어, 의미 있는 파지를 위해서는 사물의 특정 부위를 인식하고 파지하는 방법이 필수적이다. 본 연구에서는 딥러닝 YOLO기술을 적용하여 사물의 특정 부위를 인식하고, DA-DRL을 적용하여, 사물의 특정 부분을 파지하는 딥러닝 학습 기술을 제안하고, 2 종 사물(망치 및 칼)의 손잡이 부분을 인식하고 파지하여 검증한다. 본 연구에서 제안하는 학습방법은 사람과 상호작용하거나 도구를 용도에 맞게 사용해야하는 분야에서 유용할 것이다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.240-243
/
2021
Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.447-448
/
2021
The boundary-based security architecture has the advantage of easy deployment of security solutions and high operational efficiency. The boundary-based security architecture is easy to detect and block externally occurring security threats, but is inappropriate to block internally occurring security threats. Unfortunately, internal security threats are increasing in frequency. In order to solve this problem, a zero trust model has been proposed. The zero trust model requires a real-time monitoring function to analyze the behavior of a subject accessing various information resources. However, there is a limit to real-time monitoring of file access of a subject confirmed to be trusted in the system. Accordingly, this study proposes a method to monitor user's file access in real time. To verify the effectiveness of the proposed monitoring method, the target function was verified after the demonstration implementation. As a result, it was confirmed that the method proposed in this study can monitor access to files in real time.
Sang-Jun Lee;MIN KYUNG IL;Nam Sang Do;LIM JOON SUNG;Keunhee Han;Hyun Wook Han
The Journal of Bigdata
/
v.6
no.2
/
pp.99-108
/
2021
Recently, unexpected and more advanced cyber medical treat attacks are on the rise. However, in responding to various patterns of cyber medical threat attack, rule-based security methodologies such as physical blocking and replacement of medical devices have the limitations such as lack of the man-power and high cost. As a way to solve the problems, the medical community is also paying attention to artificial intelligence technology that enables security threat detection and prediction by self-learning the past abnormal behaviors. In this study, there has collecting and learning the medical information data from integrated Medical-Information-Systems of the medical center and introduce the research methodology which is to develop the AI-based Net-Working Behavior Adaptive Information data. By doing this study, we will introduce all technological matters of rule-based security programs and discuss strategies to activate artificial intelligence technology in the medical information business with the various restrictions.
Journal of Information Science Theory and Practice
/
v.10
no.spc
/
pp.143-153
/
2022
With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.2B
/
pp.161-170
/
2006
A tracer test technique using a radioisotope was proposed to investigate pollutant mixing characteristics in rivers. The main advantages of radioisotope as a tracer in field tests are that it can be detected easily, and that its detection range is quite large. Also, using the radioisotope, the amount sorbed by the bed material and the biota may be a minimum. Field tracer tests were conducted at seven different sites in natural rivers with various meandering pattern. Based on the acquired data, the behavior of the tracer cloud in the intermediate-field was examined two-dimensionally, and dispersion coefficients were calculated using several evaluation methods. Results revealed that the tracer cloud was transported skewed to the outer bank and dispersion coefficients in bends were larger than those in straight reaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.