• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.032 seconds

Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering the Age of User Profiles

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1726-1732
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents an efficient rough set based anomaly detection method that can effectively identify a group of especially harmful internal attackers - masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on this, the used pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with the age of the user profile. The performance of the proposed scheme is evaluated by using a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed scheme that considers the age of user profiles.

  • PDF

Design and Evaluation of a Dynamic Anomaly Detection Scheme Considering the Age of User Profiles

  • Lee, Hwa-Ju;Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.315-326
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents a dynamic anomaly detection scheme that can effectively identify a group of especially harmful internal masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on the feature values, the use pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with both the age of the user profile and weighted feature values. The performance of our scheme is evaluated by a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed dynamic scheme that considers the age of user profiles.

  • PDF

Attack Path and Intention Recognition System for detecting APT Attack (APT 공격 탐지를 위한 공격 경로 및 의도 인지 시스템)

  • Kim, Namuk;Eom, Jungho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.67-78
    • /
    • 2020
  • Typical security solutions such as intrusion detection system are not suitable for detecting advanced persistent attack(APT), because they cannot draw the big picture from trivial events of security solutions. Researches on techniques for detecting multiple stage attacks by analyzing the correlations between security events or alerts are being actively conducted in academic field. However, these studies still use events from existing security system, and there is insufficient research on the structure of the entire security system suitable for advanced persistent attacks. In this paper, we propose an attack path and intention recognition system suitable for multiple stage attacks like advanced persistent attack detection. The proposed system defines the trace format and overall structure of the system that detects APT attacks based on the correlation and behavior analysis, and is designed with a structure of detection system using deep learning and big data technology, etc.

Abnormal Crowd Behavior Detection Using Heuristic Search and Motion Awareness

  • Usman, Imran;Albesher, Abdulaziz A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.

Abnormal Traffic Behavior Detection by User-Define Trajectory (사용자 지정 경로를 이용한 비정상 교통 행위 탐지)

  • Yoo, Haan-Ju;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • This paper present a method for abnormal traffic behavior, or trajectory, detection in static traffic surveillance camera with user-defined trajectories. The method computes the abnormality of moving object with a trajectory of the object and user-defined trajectories. Because of using user-define based information, the presented method have more accurate and faster performance than models need a learning about normal behaviors. The method also have adaptation process of assigned rule, so it can handle scene variation for more robust performance. The experimental results show that our method can detect abnormal traffic behaviors in various situation.

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

Development of an RF-Ultrasonic Sensor System to Detect Goal and Obstacle for the CARTRI Robot (CARTRI 로봇의 목표물 검출과 장애물 검출을 위한 RE-초음파 센서 시스템 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1009-1018
    • /
    • 2003
  • In a park or street, we can see many people Jogging or walking with their dogs chasing their masters. In the previous study, an entertainment robot, CARTRI that imitates the dog's behavior was created. The robot's task was chasing a moving goal that was recognized as the master. The physical structure of the CARTRI robot was three-wheel type locomotion system. The sensor system which could detect the position of the master in the outdoor space, was consists of a signal transmitter which was held by the master and five ultrasonic receivers which were mounted on the robot. In the experiment, the robot could chase a human walking in outdoor space like a park. But it could not avoid obstacles and its behavior was only goal-chasing behavior because of the limit of the sensor system. In this study, an improved RF-ultrasonic sensor system which can detect both goal and obstacle is developed in order to enable the CARTRI robot to carry out various behavior. The sensor system has increased angle resolution by using eight ultrasonic receivers instead of five in the previous study. And it can detect obstacle by using reflective type ultrasonic sensors. The sensor system is designed so that detection of goal and obstacle could be conducted in one sampling period. The Performance of the developed sensor system is evaluated through experiments.

HB-DIPM: Human Behavior Analysis-Based Malware Detection and Intrusion Prevention Model in the Future Internet

  • Lee, Jeong Kyu;Moon, Seo Yeon;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.489-501
    • /
    • 2016
  • As interest in the Internet increases, related technologies are also quickly progressing. As smart devices become more widely used, interest is growing in words are missing here like "improving the" or "figuring out how to use the" future Internet to resolve the fundamental issues of transmission quality and security. The future Internet is being studied to improve the limits of existing Internet structures and to reflect new requirements. In particular, research on words are missing here like "finding new forms of" or "applying new forms of" or "studying various types of" or "finding ways to provide more" reliable communication to connect the Internet to various services is in demand. In this paper, we analyze the security threats caused by malicious activities in the future Internet and propose a human behavior analysis-based security service model for malware detection and intrusion prevention to provide more reliable communication. Our proposed service model provides high reliability services by responding to security threats by detecting various malware intrusions and protocol authentications based on human behavior.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

A Machine Learning-Based Encryption Behavior Cognitive Technique for Ransomware Detection (랜섬웨어 탐지를 위한 머신러닝 기반 암호화 행위 감지 기법)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.12
    • /
    • pp.55-62
    • /
    • 2023
  • Recent ransomware attacks employ various techniques and pathways, posing significant challenges in early detection and defense. Consequently, the scale of damage is continually growing. This paper introduces a machine learning-based approach for effective ransomware detection by focusing on file encryption and encryption patterns, which are pivotal functionalities utilized by ransomware. Ransomware is identified by analyzing password behavior and encryption patterns, making it possible to detect specific ransomware variants and new types of ransomware, thereby mitigating ransomware attacks effectively. The proposed machine learning-based encryption behavior detection technique extracts encryption and encryption pattern characteristics and trains them using a machine learning classifier. The final outcome is an ensemble of results from two classifiers. The classifier plays a key role in determining the presence or absence of ransomware, leading to enhanced accuracy. The proposed technique is implemented using the numpy, pandas, and Python's Scikit-Learn library. Evaluation indicators reveal an average accuracy of 94%, precision of 95%, recall rate of 93%, and an F1 score of 95%. These performance results validate the feasibility of ransomware detection through encryption behavior analysis, and further research is encouraged to enhance the technique for proactive ransomware detection.