Kim Sung-Suk;Choi Jun-Ho;Bae Young-Geon;Kim Pan-Koo
The KIPS Transactions:PartC
/
v.13C
no.1
s.104
/
pp.45-54
/
2006
Nowadays, a lot of techniques have been applied for the detection of malicious behavior. However, the current techniques taken into practice are facing with the challenge of much variations of the original malicious behavior, and it is impossible to respond the new forms of behavior appropriately and timely. There are also some limitations can not be solved, such as the error affirmation (positive false) and mistaken obliquity (negative false). With the questions above, we suggest a new method here to improve the current situation. To detect the malicious code, we put forward dealing with the basic source code units through the conceptual graph. Basically, we use conceptual graph to define malicious behavior, and then we are able to compare the similarity relations of the malicious behavior by testing the formalized values which generated by the predefined graphs in the code. In this paper, we show how to make a conceptual graph and propose an efficient method for similarity measure to discern the malicious behavior. As a result of our experiment, we can get more efficient detection rate.
With the emergence of the new service industry due to the development of information and communication technology, cyber space risks such as personal information infringement and industrial confidentiality leakage have diversified, and the security problem has emerged as a critical issue. In this paper, we propose a behavior-based anomaly detection method that is suitable for real-time and large-volume data analysis technology. We show that the proposed detection method is superior to existing signature security countermeasures that are based on large-capacity user log data according to in-company personal information abuse and internal information leakage. As the proposed behavior-based anomaly detection method requires a technique for processing large amounts of data, a real-time search engine is used, called Elasticsearch, which is based on an inverted index. In addition, statistical based frequency analysis and preprocessing were performed for data analysis, and the DBSCAN algorithm, which is a density based clustering method, was applied to classify abnormal data with an example for easy analysis through visualization. Unlike the existing anomaly detection system, the proposed behavior-based anomaly detection technique is promising as it enables anomaly detection analysis without the need to set the threshold value separately, and was proposed from a statistical perspective.
Journal of the Korea Society of Computer and Information
/
v.19
no.1
/
pp.85-94
/
2014
This paper studied the detection technique using file DNA-based behavior pattern analysis in order to minimize damage to user system by malicious programs before signature or security patch is released. The file DNA-based detection technique was applied to defend against zero day attack and to minimize false detection, by remedying weaknesses of the conventional network-based packet detection technique and process-based detection technique. For the file DNA-based detection technique, abnormal behaviors of malware were splitted into network-related behaviors and process-related behaviors. This technique was employed to check and block crucial behaviors of process and network behaviors operating in user system, according to the fixed conditions, to analyze the similarity of behavior patterns of malware, based on the file DNA which process behaviors and network behaviors are mixed, and to deal with it rapidly through hazard warning and cut-off.
Background: The aim of the present study was to investigate perceived inhibiting and facilitating factors concerning cervical cancer early diagnosis behavior in Turkish women over the age of 40. Materials and Methods: The study was carried out by qualitative focus group interview with 35 participating women, in the period between April-June 2010. A semi-structured interview questionnaire based on the Health Belief Model and the Health Promotion Model was used. Content analysis was applied to the study data. Results: Barriers such as lack of knowledge of women as regards to the cervical cancer and early detection, lack of sensitivity-negligence, forgetting, fear, inadequacy of health insurance and transportation, financial problems, inability to get an appointment, lack of female doctors, embarassment, fatalist approach were frequently addressed. As for facilitating factors, these included provision of information, health professionals showing interest and tolerance, free services, provision of transportation means and reminding telephone calls. Conclusions: Focus group interviews were found to be effective in determining inhibiting and facilitating factors concerning cervical cancer early diagnosis behavior. In line with the results of the study, preparation of structured national and regional education programs and their addition to curriculum programs may be effective in realizing and maintaining positive early detection behavior.
With expanded use of B2B(between enterprises), B2G(between enterprises and government) and EDI(Electronic Data Interchange), and increased amount of available network information and information protection threat, as it was judged that security can not be perfectly assured only with security technology such as electronic signature/authorization and access control, Bayesian networks have been developed for protection of information. Therefore, this study speculates Bayesian networks system, centering on ERP(Enterprise Resource Planning). The Bayesian networks system is one of the methods to resolve uncertainty in electronic data interchange and is applied to overcome uncertainty of abnormal invasion detection in ERP. Bayesian networks are applied to construct profiling for system call and network data, and simulate against abnormal invasion detection. The host-based abnormal invasion detection system in electronic trade analyses system call, applies Bayesian probability values, and constructs normal behavior profile to detect abnormal behaviors. This study assumes before and after of delivery behavior of the electronic document through Bayesian probability value and expresses before and after of the delivery behavior or events based on Bayesian networks. Therefore, profiling process using Bayesian networks can be applied for abnormal invasion detection based on host and network. In respect to transmission and reception of electronic documents, we need further studies on standards that classify abnormal invasion of various patterns in ERP and evaluate them by Bayesian probability values, and on classification of B2B invasion pattern genealogy to effectively detect deformed abnormal invasion patterns.
The literal meaning of loitering is "to lingering aimlessly or as if aimless in or about a place". And most criminals show this kind of act before they actually commit crime. Therefore, detecting this kind of loitering can effectively prevent a variety of crime. In this paper, we propose a loitering-detection algorithm using the Raspberry Pi. Proposed algorithm uses an adaptive difference image to detect moving objects and morphology opening operation to enhance the accuracy of detection. The loitering- behavior is being detected by using the center of gravity of the object to see the changes of angle; and pixel movement distance to determine the height of the object. When the loitering-behavior is detected, it outputs the alarm to tell the users by using the Raspberry Pi.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.4
/
pp.9-18
/
2015
In recent years, the number of applications embedded in the various devices such as a smart phone is getting larger. Due to the frequent changes of states in the execution environment, various malfunctions may occur. In order to handle the issue, this paper suggests an approach to detecting method-level failures in the legacy software systems. We can determine if the software executes the abnormal behavior based on the behavior model. However, when we apply the context-sensitive behavior model to the method-level, several problems happen such as false alarms and monitoring overhead. To tackle those issues, we propose CIBFD (Context-Insensitive Behavior Model-based Failure Detection) method. Through the case studies, we compare CIBFD method with the existing method. In addition, we analyze the effectiveness of the method for each application domains.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.4
/
pp.11-17
/
2017
Organizations are experiencing an ever-growing concern of how to prevent confidential information leakage from internal employees. Those who have authorized access to organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. In this paper, we investigate the task of detecting such insider through a method of modeling a user's normal behavior in order to detect anomalies in that behavior which may be indicative of an data leakage. We make use of Hidden Markov Models to learn what constitutes normal behavior, and then use them to detect significant deviations from that behavior. Experiments have been made to determine the optimal HMM parameters and our result shows detection capability of 20% false positive and 80% detection rate.
As data utilization and importance becomes important, data-related accidents and damages are gradually increasing. Especially, insider threats are the most harmful threats. And these insider threats are difficult to detect by traditional security systems, so rule-based abnormal behavior detection method has been widely used. However, it has a lack of adapting flexibly to changes in new attacks and new environments. Therefore, in this paper, we propose an adaptive anomaly movement detection framework based on a statistical Markov model to detect insider threats in advance. This is designed to minimize false positive rate and false negative rate by adopting environment factors that directly influence the behavior, and learning data based on statistical Markov model. In the experimentation, the framework shows good performance with a high F2-score of 0.92 and suspicious behavior detection, which seen as a normal behavior usually. It is also extendable to detect various types of suspicious activities by applying multiple modeling algorithms based on statistical learning and environment factors.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.3
/
pp.667-677
/
2012
Vulnerable web applications have been the primary method used by the attackers to spread their malware to a large number of victims. Such attacks commonly make use of malicious links to remotely execute a rather advanced malicious code. The attackers often deploy malwares that utilizes unknown vulnerabilities so-called "zero-day vulnerabilities." The existing computer vaccines are mostly signature-based and thus are effective only against known attack patterns, but not capable of detecting zero-days attacks. To mitigate such limitations of the current solutions, there have been a numerous works that takes a behavior-based approach to improve detection against unknown malwares. However, behavior-based solutions arbitrarily introduced a several limitations that made them unsuitable for real-life situations. This paper proposes an advanced web browser based malicious behavior detection system that solves the problems and limitations of the previous approaches.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.