• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.046 seconds

Game Bot Detection Approach Based on Behavior Analysis and Consideration of Various Play Styles

  • Chung, Yeounoh;Park, Chang-Yong;Kim, Noo-Ri;Cho, Hana;Yoon, Taebok;Lee, Hunjoo;Lee, Jee-Hyong
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1058-1067
    • /
    • 2013
  • An approach for game bot detection in massively multiplayer online role-playing games (MMORPGs) based on the analysis of game playing behavior is proposed. Since MMORPGs are large-scale games, users can play in various ways. This variety in playing behavior makes it hard to detect game bots based on play behaviors. To cope with this problem, the proposed approach observes game playing behaviors of users and groups them by their behavioral similarities. Then, it develops a local bot detection model for each player group. Since the locally optimized models can more accurately detect game bots within each player group, the combination of those models brings about overall improvement. Behavioral features are selected and developed to accurately detect game bots with the low resolution data, considering common aspects of MMORPG playing. Through the experiment with the real data from a game currently in service, it is shown that the proposed local model approach yields more accurate results.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

Intelligent Activity Recognition based on Improved Convolutional Neural Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.807-818
    • /
    • 2022
  • In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.

An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection (소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법)

  • Youn, Hyun-Ji;Park, Soo-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.568-572
    • /
    • 2010
  • Self-healing is one of the techniques that assure dependability of mission-critical system. Self-healing consists of fault detection and fault recovery and fault detection is important first step that enables fault recovery but it causes overhead. We can detect fault based on model, the detection tasks that notify system's behavior and compare normal behavior model and system's behavior are heavy jobs. In this paper, we propose architecture-based multi-level self-adaptive monitoring method that complements model-based fault detection. The priority of fault detection per component is different in the software architecture. Because the seriousness and the frequency of fault per component are different. If the monitor is adapted to intensive to the component that has high priority of monitoring and loose to the component that has low priority of monitoring, the overhead can be decreased and the efficiency can be maintained. Because the environmental changes of software and the architectural changes bring the changes at the priority of fault detection, the monitor learns the changes of fault frequency and that is adapted to intensive to the component that has high priority of fault detection.

Violent Behavior Detection using Motion Analysis in Surveillance Video (감시 영상에서 움직임 정보 분석을 통한 폭력행위 검출)

  • Kang, Joohyung;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.430-439
    • /
    • 2015
  • The demand of violence detection techniques using a video analysis to help prevent crimes is increasing recently. Many researchers have studied vision based behavior recognition but, violent behavior analysis techniques usually focus on violent scenes in television and movie content. Many methods previously published usually used both a color(e.g., skin and blood) and motion information for detecting violent scenes because violences usually involve blood scenes in movies. However, color information (e.g., blood scenes) may not be useful cues for violence detection in surveillance videos, because they are rarely taken in real world situations. In this paper, we propose a method of violent behavior detection in surveillance videos using motion vectors such as flow vector magnitudes and changes in direction except the color information. In order to evaluate the proposed algorithm, we test both USI dataset and various real world surveillance videos from YouTube.

Anomaly Detection for IEC 61850 Substation Network (IEC 61850 변전소 네트워크에서의 이상 징후 탐지 연구)

  • Lim, Yong-Hun;Yoo, Hyunguk;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.939-946
    • /
    • 2013
  • This paper proposes normal behavior profiling methods for anomaly detection in IEC 61850 based substation network. Signature based security solutions, currently used primarily, are inadequate for APT attack using zero-day vulnerabilities. Recently, some researches about anomaly detection in control network are ongoing. However, there are no published result for IEC 61850 substation network. Our proposed methods includes 3-phase preprocessing for MMS/GOOSE packets and normal behavior profiling using one-class SVM algorithm. These approaches are beneficial to detect APT attacks on IEC 61850 substation network.

Real-time Abnormal Behavior Detection System based on Fast Data (패스트 데이터 기반 실시간 비정상 행위 탐지 시스템)

  • Lee, Myungcheol;Moon, Daesung;Kim, Ikkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1027-1041
    • /
    • 2015
  • Recently, there are rapidly increasing cases of APT (Advanced Persistent Threat) attacks such as Verizon(2010), Nonghyup(2011), SK Communications(2011), and 3.20 Cyber Terror(2013), which cause leak of confidential information and tremendous damage to valuable assets without being noticed. Several anomaly detection technologies were studied to defend the APT attacks, mostly focusing on detection of obvious anomalies based on known malicious codes' signature. However, they are limited in detecting APT attacks and suffering from high false-negative detection accuracy because APT attacks consistently use zero-day vulnerabilities and have long latent period. Detecting APT attacks requires long-term analysis of data from a diverse set of sources collected over the long time, real-time analysis of the ingested data, and correlation analysis of individual attacks. However, traditional security systems lack sophisticated analytic capabilities, compute power, and agility. In this paper, we propose a Fast Data based real-time abnormal behavior detection system to overcome the traditional systems' real-time processing and analysis limitation.

Anomaly behavior detection using Negative Selection algorithm based anomaly detector (Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지)

  • 김미선;서재현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.391-394
    • /
    • 2004
  • Change of paradigm of network attack technique was begun by fast extension of the latest Internet and new attack form is appearing. But, Most intrusion detection systems detect informed attack type because is doing based on misuse detection, and active correspondence is difficult in new attack. Therefore, to heighten detection rate for new attack pattern, visibilitys to apply human immunity mechanism are appearing. In this paper, we create self-file from normal behavior profile about network packet and embody self recognition algorithm to use self-nonself discrimination in the human immune system to detect anomaly behavior. Sense change because monitors self-file creating anomaly detector based on Negative Selection Algorithm that is self recognition algorithm's one and detects anomaly behavior. And we achieve simulation to use DARPA Network Dataset and verify effectiveness of algorithm through the anomaly detection rate.

  • PDF

A Study on the Insider Behavior Analysis Framework for Detecting Information Leakage Using Network Traffic Collection and Restoration (네트워크 트래픽 수집 및 복원을 통한 내부자 행위 분석 프레임워크 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.125-139
    • /
    • 2017
  • In this paper, we developed a framework to detect and predict insider information leakage by collecting and restoring network traffic. For automated behavior analysis, many meta information and behavior information obtained using network traffic collection are used as machine learning features. By these features, we created and learned behavior model, network model and protocol-specific models. In addition, the ensemble model was developed by digitizing and summing the results of various models. We developed a function to present information leakage candidates and view meta information and behavior information from various perspectives using the visual analysis. This supports to rule-based threat detection and machine learning based threat detection. In the future, we plan to make an ensemble model that applies a regression model to the results of the models, and plan to develop a model with deep learning technology.

User Behavior Based Web Attack Detection in the Face of Camouflage (정상 사용자로 위장한 웹 공격 탐지 목적의 사용자 행위 분석 기법)

  • Shin, MinSik;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.365-371
    • /
    • 2021
  • With the rapid growth in Internet users, web applications are becoming the main target of hackers. Most previous WAFs (Web Application Firewalls) target every single HTTP request packet rather than the overall behavior of the attacker, and are known to be difficult to detect new types of attacks. In this paper, we propose a web attack detection system based on user behavior using machine learning to detect attacks of unknown patterns. In order to define user behavior, we focus on features excluding areas where an attacker can camouflage as a normal user. The experimental results shows that by using the path and query information to define users' behaviors, best results for an accuracy of 99% with Decision forest.