• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.029 seconds

Unusual Behavior Detection of Korean Cows using Motion Vector and SVDD in Video Surveillance System (움직임 벡터와 SVDD를 이용한 영상 감시 시스템에서 한우의 특이 행동 탐지)

  • Oh, Seunggeun;Park, Daihee;Chang, Honghee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.795-800
    • /
    • 2013
  • Early detection of oestrus in Korean cows is one of the important issues in maximizing the economic benefit. Although various methods have been proposed, we still need to improve the performance of the oestrus detection system. In this paper, we propose a video surveillance system which can detect unusual behavior of multiple cows including the mounting activity. The unusual behavior detection is to detect the dangerous or abnormal situations of cows in video coming in real time from a surveillance camera promptly and correctly. The prototype system for unusual behavior detection gets an input video from a fixed location camera, and uses the motion vector to represent the motion information of cows in video, and finally selects a SVDD (one of the most well-known types of one-class SVM) as a detector by reinterpreting the unusual behavior into an one class decision problem from the practical points of view. The experimental results with the videos obtained from a farm located in Jinju illustrate the efficiency of the proposed method.

An Empirical Study on the Development of Behavior Model of Insurance Fraud (보험사기행동모형 개발에 관한 실증적 연구)

  • Lee, Myung-Jin;Gim, Gwang-Yong
    • Journal of Information Technology Services
    • /
    • v.6 no.2
    • /
    • pp.1-18
    • /
    • 2007
  • Many researches have been done in insurance fraud as the amount and frequency of insurance fraud have been increasing continuously. In particular, the development of insurance fraud detection system using large database management techniques including data mining or link analysis based on visual method have been the main research topic in insurance fraud. However, this kinds of detection system were very ineffective to find unintentional insurance fraud happened by accident even though it was so good to find intentional and organized crime insurance fraud. Therefore, this research suggests insurance fraud as an ethical decision making and applies TPB(Theory of Planned Behavior) for the finding of reasons and prevention strategies of unintentional insurance fraud happened by accident. The results of research show that TPB is very appropriate model to explain the behavior of insurance fraud and that insurance agents force to do insurance fraud as affecting perceived behavior control. Therefore, education and pubic relations for insurance fraud are very effective for preventing insurance fraud and developing insurance service industry.

A System for Improving Data Leakage Detection based on Association Relationship between Data Leakage Patterns

  • Seo, Min-Ji;Kim, Myung-Ho
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.520-537
    • /
    • 2019
  • This paper proposes a system that can detect the data leakage pattern using a convolutional neural network based on defining the behaviors of leaking data. In this case, the leakage detection scenario of data leakage is composed of the patterns of occurrence of security logs by administration and related patterns between the security logs that are analyzed by association relationship analysis. This proposed system then detects whether the data is leaked through the convolutional neural network using an insider malicious behavior graph. Since each graph is drawn according to the leakage detection scenario of a data leakage, the system can identify the criminal insider along with the source of malicious behavior according to the results of the convolutional neural network. The results of the performance experiment using a virtual scenario show that even if a new malicious pattern that has not been previously defined is inputted into the data leakage detection system, it is possible to determine whether the data has been leaked. In addition, as compared with other data leakage detection systems, it can be seen that the proposed system is able to detect data leakage more flexibly.

Detection of Crowd Escape Behavior in Surveillance Video (감시 영상에서 군중의 탈출 행동 검출)

  • Park, Junwook;Kwak, Sooyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.731-737
    • /
    • 2014
  • This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.

Normal Behavior Profiling based on Bayesian Network for Anomaly Intrusion Detection (이상 침입 탐지를 위한 베이지안 네트워크 기반의 정상행위 프로파일링)

  • 차병래;박경우;서재현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 2003
  • Program Behavior Intrusion Detection Technique analyses system calls that called by daemon program or root authority, constructs profiles. and detectes anomaly intrusions effectively. Anomaly detections using system calls are detected only anomaly processes. But this has a Problem that doesn't detect affected various Part by anomaly processes. To improve this problem, the relation among system calls of processes is represented by bayesian probability values. Application behavior profiling by Bayesian Network supports anomaly intrusion informations . This paper overcomes the Problems of various intrusion detection models we Propose effective intrusion detection technique using Bayesian Networks. we have profiled concisely normal behaviors using behavior context. And this method be able to detect new intrusions or modificated intrusions we had simulation by proposed normal behavior profiling technique using UNM data.

  • PDF

Profiling Program Behavior with X2 distance-based Multivariate Analysis for Intrusion Detection (침입탐지를 위한 X2 거리기반 다변량 분석기법을 이용한 프로그램 행위 프로파일링)

  • Kim, Chong-Il;Kim, Yong-Min;Seo, Jae-Hyeon;Noh, Bong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.397-404
    • /
    • 2003
  • Intrusion detection techniques based on program behavior can detect potential intrusions against systems by analyzing system calls made by demon programs or root-privileged programs and building program profiles. But there is a drawback : large profiles must be built for each program. In this paper, we apply $X^2$ distance-based multivariate analysis to profiling program behavior and detecting abnormal behavior in order to reduce profiles. Experiment results show that profiles are relatively small and the detection rate is significant.

Peri-estrus activity and mounting behavior and its application to estrus detection in Hanwoo (Korea Native Cattle)

  • Si Nae Cheon;Geun-Woo Park;Kyu-Hyun Park;Jung Hwan Jeon
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.748-758
    • /
    • 2023
  • This study was conducted to investigate the change in activity and mounting behavior in Hanwoo (Korean Native Cattle) during the peri-estrus period and its application to estrus detection. A total of 20 Hanwoo cows were fitted with a neck-collar accelerometer device, which measured the location and acceleration of cow movements and recorded the number of instances of mounting behavior by the altitude data. The data were analyzed in three periods (24-, 6-, and 2-h periods). Blood samples were collected for 5 days after the prostaglandin F2α (PGF2α) injection, and the concentrations of estradiol, progesterone, follicle-stimulating hormone, and luteinizing hormone were determined by enzyme-linked immunosorbent assays. Activity and mounting behavior recorded over 2-h periods significantly increased as estrus approached and were more efficient at detecting estrus than over 24- and 6-h periods (p < 0.05). Endocrine patterns did not differ with the variation of individual cows during the peri-estrus period (p > 0.05). Activity was selected as the best predictor through stepwise discriminant analysis. However, activity alone is not enough to detect estrus. We suggest that a combination of activity and mounting behavior may improve estrus detection efficiency in Hanwoo. Further research is necessary to validate the findings on a larger sample size.

A dynamic procedure for defection detection and prevention based on SOM and a Markov chain

  • Kim, Young-ae;Song, Hee-seok;Kim, Soung-hie
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.141-148
    • /
    • 2003
  • Customer retention is a common concern for many industries and a critical issue for the survival in today's greatly compressed marketplace. Current customer retention models only focus on detection of potential defectors based on the likelihood of defection by using demographic and customer profile information. In this paper, we propose a dynamic procedure for defection detection and prevention using past and current customer behavior by utilizing SOM and Markov chain. The basic idea originates from the observation that a customer has a tendency to change his behavior (i.e. trim-out his usage volumes) before his eventual withdrawal. This gradual pulling out process offers the company the opportunity to detect the defection signals. With this approach, we have two significant benefits compared with existing defection detection studies. First, our procedure can predict when the potential defectors could withdraw and this feature helps to give marketing managers ample lead-time for preparing defection prevention plans. The second benefit is that our approach can provide a procedure for not only defection detection but also defection prevention, which could suggest the desirable behavior state for the next period so as to lower the likelihood of defection. We applied our dynamic procedure for defection detection and prevention to the online gaming industry. Our suggested procedure could predict potential defectors without deterioration of prediction accuracy compared to that of the MLP neural network and DT.

  • PDF

Abnormal Behavior Monitoring System with YOLO AI Platform (YOLO 인공지능 플랫폼을 이용한 이상행동 감시 시스템)

  • Lee, Sang-Rak;Son, Byeong-Su;Park, Jun-Ho;Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.431-433
    • /
    • 2021
  • In this paper, abnormal behavior monitoring system using YOLO AI platform was implemented and had superior response characteristics compared to the conventional monitoring system using two-shot detection by using one-shot detection of YOLO system. The YOLO platform was trained using image dataset composed of abnormal behaviors such as assault, theft, and arson. The abnormal behavior monitoring system consists of client and server and can be applicable to smart cities to solve various crime problems if it is commercialized.

  • PDF

A Study on Monitoring System for an Abnormal Behaviors by Object's Tracking (객체 추적을 통한 이상 행동 감시 시스템 연구)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.589-596
    • /
    • 2013
  • With the increase of social crime rate, the interest on the intelligent security system is also growing. This paper proposes a detection system of monitoring whether abnormal behavior is being carried in the images captured using CCTV. After detection of an object via subtraction from background image and morpholgy, this system extracts an abnormal behavior by each object's feature information and its trajectory. When an object is loitering for a while in CCTV images, this system considers the loitering as an abnormal behavior and sends the alarm signal to the control center to facilitate prevention in advance. Especially, this research aims at detecting a loitoring act among various abnormal behaviors and also extends to the detection whether an incoming object is identical to one of inactive objects out of image.