• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.027 seconds

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

Continuous Human Activity Detection Using Multiple Smart Wearable Devices in IoT Environments

  • Alshamrani, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2021
  • Recent improvements on the quality, fidelity and availability of biometric data have led to effective human physical activity detection (HPAD) in real time which adds significant value to applications such as human behavior identification, healthcare monitoring, and user authentication. Current approaches usually use machine-learning techniques for human physical activity recognition based on the data collected from wearable accelerometer sensor from a single wearable smart device on the user. However, collecting data from a single wearable smart device may not provide the complete user activity data as it is usually attached to only single part of the user's body. In addition, in case of the absence of the single sensor, then no data can be collected. Hence, in this paper, a continuous HPAD will be presented to effectively perform user activity detection with mobile service infrastructure using multiple wearable smart devices, namely smartphone and smartwatch placed in various locations on user's body for more accurate HPAD. A case study on a comprehensive dataset of classified human physical activities with our HAPD approach shows substantial improvement in HPAD accuracy.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

Multiclass Botnet Detection and Countermeasures Selection

  • Farhan Tariq;Shamim baig
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.205-211
    • /
    • 2024
  • The increasing number of botnet attacks incorporating new evasion techniques making it infeasible to completely secure complex computer network system. The botnet infections are likely to be happen, the timely detection and response to these infections helps to stop attackers before any damage is done. The current practice in traditional IP networks require manual intervention to response to any detected malicious infection. This manual response process is more probable to delay and increase the risk of damage. To automate this manual process, this paper proposes to automatically select relevant countermeasures for detected botnet infection. The propose approach uses the concept of flow trace to detect botnet behavior patterns from current and historical network activity. The approach uses the multiclass machine learning based approach to detect and classify the botnet activity into IRC, HTTP, and P2P botnet. This classification helps to calculate the risk score of the detected botnet infection. The relevant countermeasures selected from available pool based on risk score of detected infection.

Traffic Anomaly Detection for Campus Networks using Fisher Linear Discriminant (Fisher 선형 분류법을 이용한 비정상 트래픽 탐지)

  • Park, Hyun-Hee;Kim, Mee-Joung;Kang, Chul-Hee
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.140-149
    • /
    • 2009
  • Traffic anomaly detection is one of important technology that should be considered in network security and administration. In this paper, we propose an abnormal traffic detection mechanism that includes traffic monitoring and traffic analysis. We develop analytical passive monitoring system called WISE-Mon which can inspect traffic behavior. We establish a criterion by analyzing the characteristics of a traffic training set. To detect abnormal traffic, we derive a hyperplane by using Fisher linear discriminant and chi-square distribution as well as the analyzed characteristics of traffic. Our mechanism can support reliable results for traffic anomaly detection and is compatible to real-time detection. In addition, since the trend of traffic can be changed as time passes, the hyperplane has to be updated periodically to reflect the changes. Accordingly, we consider the self-learning algorithm which reflects the trend of the traffic and so enables to increase the pliability of detection probability. Numerical results are presented to validate the accuracy of proposed mechanism. It shows that the proposed mechanism is reliable and relevant for traffic anomaly detection.

  • PDF

Real Time Face detection Method Using TensorRT and SSD (TensorRT와 SSD를 이용한 실시간 얼굴 검출방법)

  • Yoo, Hye-Bin;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.323-328
    • /
    • 2020
  • Recently, new approaches that significantly improve performance in object detection and recognition using deep learning technology have been proposed quickly. Of the various techniques for object detection, especially facial object detection (Faster R-CNN, R-CNN, YOLO, SSD, etc), SSD is superior in accuracy and speed to other techniques. At the same time, multiple object detection networks are also readily available. In this paper, among object detection networks, Mobilenet v2 network is used, models combined with SSDs are trained, and methods for detecting objects at a rate of four times or more than conventional performance are proposed using TensorRT engine, and the performance is verified through experiments. Facial object detector was created as an application to verify the performance of the proposed method, and its behavior and performance were tested in various situations.

Comparison of Body Image, Self-Esteem and Behavior Problems between Children of Short and Normal Stature (저신장증 아동과 정상 아동의 신체상, 자아존중감 및 문제행동)

  • Kim, Mi-Ye
    • Child Health Nursing Research
    • /
    • v.16 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Purpose: The purpose of this study was to examine the relationship of body image, self-esteem, and behavior problems comparing children of short stature and children of normal height, and to enhance growth development through early detection of social or emotional problems in children of short stature. Methods: The data were collected from June 2 to September 25, 2008. The participants were 38 children who were diagnosed with short stature and their mothers and 38 children of age appropriate stature and their mothers selected from 311 elementary students in D city. The participants were matched by using propensity analysis for controlling confounding variables. Sapiro-Wilk test, t-test, Wilcoxon test, and Pearson correlation coefficients with SPSS/WIN 14.0 program were used to analyze the data. Results: There were significant differences in body image and behavior problems between children of short stature and children of age appropriate stature. There was no significant difference in self-esteem between the two groups. Positive correlation was found between body image and self-esteem. In children of age appropriate stature, a negative correlation was found between body image and behavior problems. Conclusion: A specialized program which focuses on behavior problems, body image, and self-esteem should be developed to help children of short stature in school-based settings.

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection (알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Yun, Jiyoung;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2021
  • With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.