Park, Yeon-Hee;Kim, Jong-Uk;Lee, Seong-Uck;Kim, Chol-Min;Tariq, Usman;Hong, Man-Pyo
Journal of KIISE:Computing Practices and Letters
/
v.14
no.5
/
pp.517-521
/
2008
A worm is a malware that propagates quickly from host to host without any human intervention. Need of early worm detection has changed research paradigm from signature based worm detection to the behavioral based detection. To increase effectiveness of proposed solution, in this paper we present mechanism of detection and prevention of worm in distributed fashion. Furthermore, to minimize the worm destruction; upon worm detection we propagate the possible attack aleγt to neighboring nodes in secure and organized manner. Considering worm behavior, our proposed mechanism detects worm cycles and infection chains to detect the sudden change in network performance. And our model neither needs to maintain a huge database of signatures nor needs to have too much computing power, that is why it is very light and simple. So, our proposed scheme is suitable for the ubiquitous environment. Simulation results illustrate better detection and prevention which leads to the reduction of infection rate.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.7
/
pp.613-621
/
2019
Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.9
/
pp.1266-1271
/
2022
Cats have strong wildness so they have a characteristic of hiding diseases well. The disease may have already worsened when the guardian finds out that the cat has a disease. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia, polyuria, and frequent urination more quickly. In this paper, 1) Efficient version of DeepLabCut for pose estimation, 2) YOLO v4 for object detection, 3) LSTM is used for behavior prediction, and 4) BoT-SORT is used for object tracking running on an artificial intelligence device. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the server system.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.165-167
/
2022
The proportion of cat cats among companion animals has been increasing at an average annual rate of 25.4% since 2012. Cats have strong wildness compared to dogs, so they have a characteristic of hiding diseases well. Therefore, when the guardian finds out that the cat has a disease, the disease may have already worsened. Symptoms such as anorexia (eating avoidance), vomiting, diarrhea, polydipsia, and polyuria in cats are some of the symptoms that appear in cat diseases such as diabetes, hyperthyroidism, renal failure, and panleukopenia. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia (drinking a lot of water), polyuria (a large amount of urine), and frequent urination (urinating frequently) more quickly. In this paper, 1) Efficient version of DeepLabCut for posture prediction running on an artificial intelligence server, 2) yolov4 for object detection, and 3) LSTM are used for behavior prediction. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the main server system.
Purpose: The purpose of this study is to set up an anomaly detection criteria for sensor data coming from a motorcycle. Methods: Five sensor values for accelerator pedal, engine rpm, transmission rpm, gear and speed are obtained every 0.02 second from a motorcycle. Exploratory data analysis is used to find any pattern in the data. Traditional process control methods such as X control chart and time series models are fitted to find any anomaly behavior in the data. Finally unsupervised learning algorithm such as k-means clustering is used to find any anomaly spot in the sensor data. Results: According to exploratory data analysis, the distribution of accelerator pedal sensor values is very much skewed to the left. The motorcycle seemed to have been driven in a city at speed less than 45 kilometers per hour. Traditional process control charts such as X control chart fail due to severe autocorrelation in each sensor data. However, ARIMA model found three abnormal points where they are beyond 2 sigma limits in the control chart. We applied a copula based Markov chain to perform statistical process control for correlated observations. Copula based Markov model found anomaly behavior in the similar places as ARIMA model. In an unsupervised learning algorithm, large sensor values get subdivided into two, three, and four disjoint regions. So extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior in the sensor values. Conclusion: Exploratory data analysis is useful to find any pattern in the sensor data. Process control chart using ARIMA and Joe's copula based Markov model also give warnings near similar places in the data. Unsupervised learning algorithm shows us that the extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior.
The Journal of the Korea institute of electronic communication sciences
/
v.12
no.6
/
pp.1159-1166
/
2017
Cattle behavior detection system based on Internet of Things is designed and implemented by using gyroscope and acceleration sensor, Arduino pro-mini and bluetooth module. The implemented system measures cattle's moving and the measured data are transmitted to smart phone by bluetooth module. They are displayed by 2-dimensional graph on the smart phone and the number of cattle's step are calculated from the graph. The detected and gathered data from the system are analyzed by the proposed algorithm to decide which cows are in the estrus or not, and the proposed system can be used to increase the success rate of artificial insemination in normal estrus by detecting cow's behaviors such as the number of steps and jumping. In this paper, the implemented cattle behavior detecting system are strapped on cattle's leg and it measures cattle behaviors for determining that a cattle is estrus or not by the proposed algorithm. In the future research, the system which lengthens communication distance and increases the number of cattle under the test will be considered and also the measured data will be database for cattle research.
Park, Tae-Dong;Lee, Jea-Ho;Bai, Shan-Lin;Park, Ki-Heon
Proceedings of the KIEE Conference
/
2008.04a
/
pp.199-200
/
2008
Demand for reliability and safety in modem systems has been increased in the research on fault detection and isolation. At traditional approaches to fault detection, redundant sensors have been used. More advanced methods are the residual analysis of signals which are created by the comparison between the actual plant behavior and the output response of a mathematical model. However, mathematical system models are difficult to obtain by using physical laws. These problems can be solved by system identification. In this paper, the transfer function of a direct current motor is estimated by using the system identification. And, the efficiency of the fault detector design is verified by using experiments.
In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.
COMS Satellite is automatically able to recover from any defined failure thanks to a full redundancy. This study assesses the effects of gyro failure on the COMS mission and analyzes the mechanism of Gyro Failure Detection, Isolation and Recovery about failure detection means, isolation and recovery actions and their consequences. At last, it checks the FDIR behavior from an injected failure on COMS simulator.
Journal of Korean Society of Industrial and Systems Engineering
/
v.33
no.4
/
pp.122-129
/
2010
High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.