• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.033 seconds

A Scalable Distributed Worm Detection and Prevention Model using Lightweight Agent (경량화 에이전트를 이용한 확장성 있는 분산 웜 탐지 및 방지 모델)

  • Park, Yeon-Hee;Kim, Jong-Uk;Lee, Seong-Uck;Kim, Chol-Min;Tariq, Usman;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.517-521
    • /
    • 2008
  • A worm is a malware that propagates quickly from host to host without any human intervention. Need of early worm detection has changed research paradigm from signature based worm detection to the behavioral based detection. To increase effectiveness of proposed solution, in this paper we present mechanism of detection and prevention of worm in distributed fashion. Furthermore, to minimize the worm destruction; upon worm detection we propagate the possible attack aleγt to neighboring nodes in secure and organized manner. Considering worm behavior, our proposed mechanism detects worm cycles and infection chains to detect the sudden change in network performance. And our model neither needs to maintain a huge database of signatures nor needs to have too much computing power, that is why it is very light and simple. So, our proposed scheme is suitable for the ubiquitous environment. Simulation results illustrate better detection and prevention which leads to the reduction of infection rate.

A Malware Detection Method using Analysis of Malicious Script Patterns (악성 스크립트 패턴 분석을 통한 악성코드 탐지 기법)

  • Lee, Yong-Joon;Lee, Chang-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.613-621
    • /
    • 2019
  • Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1266-1271
    • /
    • 2022
  • Cats have strong wildness so they have a characteristic of hiding diseases well. The disease may have already worsened when the guardian finds out that the cat has a disease. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia, polyuria, and frequent urination more quickly. In this paper, 1) Efficient version of DeepLabCut for pose estimation, 2) YOLO v4 for object detection, 3) LSTM is used for behavior prediction, and 4) BoT-SORT is used for object tracking running on an artificial intelligence device. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the server system.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.165-167
    • /
    • 2022
  • The proportion of cat cats among companion animals has been increasing at an average annual rate of 25.4% since 2012. Cats have strong wildness compared to dogs, so they have a characteristic of hiding diseases well. Therefore, when the guardian finds out that the cat has a disease, the disease may have already worsened. Symptoms such as anorexia (eating avoidance), vomiting, diarrhea, polydipsia, and polyuria in cats are some of the symptoms that appear in cat diseases such as diabetes, hyperthyroidism, renal failure, and panleukopenia. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia (drinking a lot of water), polyuria (a large amount of urine), and frequent urination (urinating frequently) more quickly. In this paper, 1) Efficient version of DeepLabCut for posture prediction running on an artificial intelligence server, 2) yolov4 for object detection, and 3) LSTM are used for behavior prediction. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the main server system.

  • PDF

Anomaly Detection in Sensor Data

  • Kim, Jong-Min;Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2018
  • Purpose: The purpose of this study is to set up an anomaly detection criteria for sensor data coming from a motorcycle. Methods: Five sensor values for accelerator pedal, engine rpm, transmission rpm, gear and speed are obtained every 0.02 second from a motorcycle. Exploratory data analysis is used to find any pattern in the data. Traditional process control methods such as X control chart and time series models are fitted to find any anomaly behavior in the data. Finally unsupervised learning algorithm such as k-means clustering is used to find any anomaly spot in the sensor data. Results: According to exploratory data analysis, the distribution of accelerator pedal sensor values is very much skewed to the left. The motorcycle seemed to have been driven in a city at speed less than 45 kilometers per hour. Traditional process control charts such as X control chart fail due to severe autocorrelation in each sensor data. However, ARIMA model found three abnormal points where they are beyond 2 sigma limits in the control chart. We applied a copula based Markov chain to perform statistical process control for correlated observations. Copula based Markov model found anomaly behavior in the similar places as ARIMA model. In an unsupervised learning algorithm, large sensor values get subdivided into two, three, and four disjoint regions. So extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior in the sensor values. Conclusion: Exploratory data analysis is useful to find any pattern in the sensor data. Process control chart using ARIMA and Joe's copula based Markov model also give warnings near similar places in the data. Unsupervised learning algorithm shows us that the extreme sensor values are the ones that need to be tracked down for any sign of anomaly behavior.

Design and Implementation of Cattle Behavior Detection System based on Internet of Things (사물 인터넷 기반 소 행동 특성 관찰 시스템 설계 및 구현)

  • Lee, Ha-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1159-1166
    • /
    • 2017
  • Cattle behavior detection system based on Internet of Things is designed and implemented by using gyroscope and acceleration sensor, Arduino pro-mini and bluetooth module. The implemented system measures cattle's moving and the measured data are transmitted to smart phone by bluetooth module. They are displayed by 2-dimensional graph on the smart phone and the number of cattle's step are calculated from the graph. The detected and gathered data from the system are analyzed by the proposed algorithm to decide which cows are in the estrus or not, and the proposed system can be used to increase the success rate of artificial insemination in normal estrus by detecting cow's behaviors such as the number of steps and jumping. In this paper, the implemented cattle behavior detecting system are strapped on cattle's leg and it measures cattle behaviors for determining that a cattle is estrus or not by the proposed algorithm. In the future research, the system which lengthens communication distance and increases the number of cattle under the test will be considered and also the measured data will be database for cattle research.

Design of a Fault Detector by using System Identification (시스템 식별 기법을 이용한 고장 탐지기 설계)

  • Park, Tae-Dong;Lee, Jea-Ho;Bai, Shan-Lin;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.199-200
    • /
    • 2008
  • Demand for reliability and safety in modem systems has been increased in the research on fault detection and isolation. At traditional approaches to fault detection, redundant sensors have been used. More advanced methods are the residual analysis of signals which are created by the comparison between the actual plant behavior and the output response of a mathematical model. However, mathematical system models are difficult to obtain by using physical laws. These problems can be solved by system identification. In this paper, the transfer function of a direct current motor is estimated by using the system identification. And, the efficiency of the fault detector design is verified by using experiments.

  • PDF

Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance (직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발)

  • Jung, Byung-jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.

A Study of FDIR S/W Design and Verification for Gyro Sensor of COMS Satellite (통신해양기상위성 자이로센서 FDIR 설계 및 검증에 관한 연구)

  • Lee, Hoon-Hee
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • COMS Satellite is automatically able to recover from any defined failure thanks to a full redundancy. This study assesses the effects of gyro failure on the COMS mission and analyzes the mechanism of Gyro Failure Detection, Isolation and Recovery about failure detection means, isolation and recovery actions and their consequences. At last, it checks the FDIR behavior from an injected failure on COMS simulator.

  • PDF

Modeling of Strength of High Performance Concrete with Artificial Neural Network and Mahalanobis Distance Outlier Detection Method (신경망 이론과 Mahalanobis Distance 이상치 탐색방법을 이용한 고강도 콘크리트 강도 예측 모델 개발에 관한 연구)

  • Hong, Jung-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.122-129
    • /
    • 2010
  • High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.