• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.035 seconds

Election Prediction on Basis of Sentimental Analysis in 3rd World Countries

  • Bilal, Hafiz Syed Muhammad;Razzaq, Muhammad Asif;Lee, Sungyoung
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.928-931
    • /
    • 2014
  • The detection of human behavior from social media revolutionized health, business, criminal and political prediction. Significance of it, in incentive transformation of public opinion had already proven for developed countries in improving democratic process of elections. In $3^{rd}$ World countries, voters poll votes for personal interests being unaware of party manifesto or national interest. These issues can be addressed by social media, resulting as ongoing process of improvement for presently adopted electoral procedures. On the optimistic side, people of such countries applied social media to garner support and campaign for political parties in General Elections. Political leaders, parties, and people empowered themselves with social media, in disseminating party's agenda and advocacy of party's ideology on social media without much campaigning cost. To study effectiveness of social media inferred from individual's political behavior, large scale analysis, sentiment detection & tweet classification was done in order to classify, predict and forecast election results. The experimental results depicts that social media content can be used as an effective indicator for capturing political behaviors of different parties positive, negative and neutral behavior of the party followers as well as party campaign impact can be predicted from the analysis.

Graph Database Design and Implementation for Ransomware Detection (랜섬웨어 탐지를 위한 그래프 데이터베이스 설계 및 구현)

  • Choi, Do-Hyeon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.24-32
    • /
    • 2021
  • Recently, ransomware attacks have been infected through various channels such as e-mail, phishing, and device hacking, and the extent of the damage is increasing rapidly. However, existing known malware (static/dynamic) analysis engines are very difficult to detect/block against novel ransomware that has evolved like Advanced Persistent Threat (APT) attacks. This work proposes a method for modeling ransomware malicious behavior based on graph databases and detecting novel multi-complex malicious behavior for ransomware. Studies confirm that pattern detection of ransomware is possible in novel graph database environments that differ from existing relational databases. Furthermore, we prove that the associative analysis technique of graph theory is significantly efficient for ransomware analysis performance.

Loitering Detection Solution for CCTV Security System (방범용 CCTV를 위한 배회행위 탐지 솔루션)

  • Kang, Joohyung;Kwak, Sooyeong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.15-25
    • /
    • 2014
  • In this paper, we propose a loitering detection using trajectory probability distribution and local direction descriptor for intelligent surveillance system. We use a background modeling method for detecting moving object and extract the motion features from each moving object for making feature vectors. After that, we detect the loitering behavior person using K-Nearest Neighbor classifier. We test the proposed method in real world environment and it can achieve real time and robust detection results.

Non-contact Ultrasonic Technique for the Thin Defect Evaluation by the Lamb-EMAT (비접촉 Lamb-EMAT를 이용한 두께감육 평가에 관한 연구)

  • Kim, Tae-Hyeong;Park, Ik-Geun;Lee, Cheol-Gu;Kim, Yong-Gwon;Kim, Hyeon-Muk;Jo, Yong-Sang
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.194-196
    • /
    • 2005
  • Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of thinning defects simulating hidden corrosion in thin aluminum plates. The proposed approach uses EMAT(electro-magnetic acoustic transducer) for the noncontact generation and detection of guided plate waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of thinning defects. Measurement of the mode group velocity can be also used to quantify of thinning depth.

  • PDF

An Approach for GPS Clock Jump Detection Using Carrier Phase Measurements in Real-Time

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.429-435
    • /
    • 2012
  • In this study, a real-time architecture for the detection of clock jumps in the GPS clock behavior is proposed. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term showing sudden jumps occasionally. As satellite clock anomalies influence on GPS measurements which could deliver wrong position information to users as a result, it is required to develop a real time technique for the detection of the clock anomalies especially on the real-time GPS applications such as aviation. The proposed strategy is based on Teager Energy operator, which can be immediately detect any changes in the satellite clock bias estimated from GPS carrier phase measurements. The verification results under numerous cases in the presence of clock jumps are demonstrated.

Spatiotemporal Patched Frames for Human Abnormal Behavior Classification in Low-Light Environment (저조도 환경 감시 영상에서 시공간 패치 프레임을 이용한 이상행동 분류)

  • Widia A. Samosir;Seong G. Kong
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.634-636
    • /
    • 2023
  • Surveillance systems play a pivotal role in ensuring the safety and security of various environments, including public spaces, critical infrastructure, and private properties. However, detecting abnormal human behavior in lowlight conditions is a critical yet challenging task due to the inherent limitations of visual data acquisition in such scenarios. This paper introduces a spatiotemporal framework designed to address the unique challenges posed by low-light environments, enhancing the accuracy and efficiency of human abnormality detection in surveillance camera systems. We proposed the pre-processing using lightweight exposure correction, patched frames pose estimation, and optical flow to extract the human behavior flow through t-seconds of frames. After that, we train the estimated-action-flow into autoencoder for abnormal behavior classification to get normal loss as metrics decision for normal/abnormal behavior.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

Clustering Normal User Behavior for Anomaly Intrusion Detection (비정상행위 탐지를 위한 사용자 정상행위 클러스터링 기법)

  • Oh, Sang-Hyun;Lee, Won-Suk
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.857-866
    • /
    • 2003
  • For detecting an intrusion based on the anomaly of a user's activities, previous works are concentrated on statistical techniques in order to analyze an audit data set. However. since they mainly analyze the average behavior of a user's activities, some anomalies can be detected inaccurately. In this paper, a new clustering algorithm for modeling the normal pattern of a user's activities is proposed. Since clustering can identify an arbitrary number of dense ranges in an analysis domain, it can eliminate the inaccuracy caused by statistical analysis. Also, clustering can be used to model common knowledge occurring frequently in a set of transactions. Consequently, the common activities of a user can be found more accurately. The common knowledge is represented by the occurrence frequency of similar data objects by the unit of a transaction as veil as the common repetitive ratio of similar data objects in each transaction. Furthermore, the proposed method also addresses how to maintain identified common knowledge as a concise profile. As a result, the profile can be used to detect any anomalous behavior In an online transaction.

Analysis of the Connectivity of Monitoring Nodes and the Coverage of Normal Nodes for Behavior-based Attack Detection in Wireless Sensor Networks (무선 센서 네트워크에서 행위 기반 공격 탐지를 위한 감시 노드의 연결성과 일반 노드의 커버리지 분석)

  • Chong, Kyun-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.27-34
    • /
    • 2013
  • In wireless sensor networks, sensors need to communicate with each other to send their sensing data to the administration node and so they are susceptible to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic approaches. A behavior-based detection is used to defend against such attacks in which some specialized monitoring nodes overhear the communications of their neighbors to detect bad packets. As monitoring nodes use more energy, it is desirable to use the minimal number of monitoring nodes to cover the whole or maximal part of the network. The monitoring nodes can either be selected among the deployed normal nodes or differ in type from normal nodes. In this study, we have developed an algorithm for selecting the predefined number of monitoring nodes needed to cover the maximum number of normal nodes when the different types of normal nodes and monitoring nodes are deployed. We also have investigated experimentally how the number of monitoring nodes and their transmission range affect the connection ratio of the monitoring nodes and the coverage of the normal nodes.

Crowd Behavior Detection using Convolutional Neural Network (컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지)

  • Ullah, Waseem;Ullah, Fath U Min;Baik, Sung Wook;Lee, Mi Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.