• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.028 seconds

Intrusion Detection System for Denial of Service Attack using Performance Signature (성능 시그네쳐를 이용한 서비스 거부 공격 침입탐지 시스템 설계)

  • Kim, Gwang-Deuk;Lee, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3011-3019
    • /
    • 1999
  • Denial of service is about knocking off services, without permission for example through crashing the whole system. This kind of attacks are easy to launch and it is hard to protect a system against them. The basic problem is that Unix assumes that users on the system or on other systems will be well behaved. This paper analyses system-based inside denial of services attack(DoS) and system metric for performance of each machine provided. And formalize the conclusions results in ways that clearly expose the performance impact of those observations. So, we present new approach. It is detecting DoS attack using performance signature for system and program behavior. We present new approach. It is detecting DoS attack using performance signature for system and program behavior. We believe that metric will be to guide to automated development of a program to detect the attack. As a results, we propose the AIDPS(Architecture for Intrusion Detection using Performance Signature) model to detect DoS attack using performance signature.

  • PDF

Improved DT Algorithm Based Human Action Features Detection

  • Hu, Zeyuan;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.4
    • /
    • pp.478-484
    • /
    • 2018
  • The choice of the motion features influences the result of the human action recognition method directly. Many factors often influence the single feature differently, such as appearance of the human body, environment and video camera. So the accuracy of action recognition is restricted. On the bases of studying the representation and recognition of human actions, and giving fully consideration to the advantages and disadvantages of different features, the Dense Trajectories(DT) algorithm is a very classic algorithm in the field of behavior recognition feature extraction, but there are some defects in the use of optical flow images. In this paper, we will use the improved Dense Trajectories(iDT) algorithm to optimize and extract the optical flow features in the movement of human action, then we will combined with Support Vector Machine methods to identify human behavior, and use the image in the KTH database for training and testing.

Damage Detection Method for Bridge Structures Using Hilbert-Huang Transform Technique (Hilbert-Huang Transform을 이용한 교량구조물의 손상추정기법)

  • 윤정방;장신애;심성한;이종재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.453-458
    • /
    • 2002
  • A recently developed Hilbert-Huang transform (HHT) technique is applied to the detection of the damage locations of bridge structures. The HHT may be used to identify the locations of damages which exhibit nonlinear and non-stationary behavior, since the instantaneous frequency characteristics of the measured signal can be analyzed by the HHT. Numerical simulations were conducted on two bridge systems with damages using controlled excitations with sweeping frequency. Nonlinear plastic model using a gap element is employed to model the behavior of the cracked elements in the numerical simulations. The results indicate that the HHT method can reasonably identify the damage locations based on a limited number of acceleration sensors. Experimental study has been 실so carried out on a steel frame to confirm the applicability of the HHT to detect a structural connection with loosened bolts.

  • PDF

Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode

  • Huang, Ke-Jing;Xu, Chun-Xuan;Xie, Wan-Zhen
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.988-992
    • /
    • 2008
  • A poly(methyl red) film-modified glassy carbon electrode (PMRE) was fabricated for determination of norfloxacin (NFX). The electrochemical behavior of NFX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. PMRE greatly enhanced the oxidation peak current of NFX owing to the extraordinary properties of poly(methyl red) film. Based on this, a sensitive and simple voltammetric method was developed for measurement of NFX. A sensitive linear voltammetric response for NFX was obtained in the concentration range of $1\;{\times}\;10^{-6}\;-\;1\;{\times}\;10^{-4}$ mol/L and the detection limit was $1\;{\times}\;10^{-7}$ mol/L using linear sweep voltammetry (LSV). The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity. The practical application of this new analytical method was demonstrated with NFX pharmaceuticals.

Abnormal Crowd Behavior Detection using a Modified Feature Map (특징점 맵 보정을 통한 군중 이상행동패턴 인식 방법)

  • Jung, Sung-Uk;Jee, Hyung-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.252-253
    • /
    • 2015
  • 군중의 이상행동을 검출하는 것은 군중 모니터링, 보안 및 CRM 시스템의 관점에서 중요한 요소 중의 하나이다. 기존의 방법은 대다수가 옵티컬플로우를 기반으로한 검출방법으로 객체가 움직이지 않는 경우에는 객체로 인식할 수 없는 문제점이 생긴다. 또한, 많은 데이터량을 처리하기 때문에 실시간성이 보장되지 않는다는 단점이 있다. 이를 극복하기 위해서, 본 논문에서는 특징점 맵 보정과 분포분석을 통한 군중의 밀집과 대피하는 현상을 검출하는 방법을 제안한다. 먼저, 군중에서 옵티컬플로우 기반으로 움직이는 FAST 특징점을 추출하고 추출된 특징점의 분포에따라 특징점맵을 복원한다. 복원된 특징점 맵과 특징점의 분포에 기반하여 군중의 이상정도를 결정하게 된다. PETS2009 데이터베이스를 사용하여 결과를 측정하였다.

  • PDF

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

Efficient Driver Attention Monitoring Using Pre-Trained Deep Convolution Neural Network Models

  • Kim, JongBae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recently, due to the development of related technologies for autonomous vehicles, driving work is changing more safely. However, the development of support technologies for level 5 full autonomous driving is still insufficient. That is, even in the case of an autonomous vehicle, the driver needs to drive through forward attention while driving. In this paper, we propose a method to monitor driving tasks by recognizing driver behavior. The proposed method uses pre-trained deep convolutional neural network models to recognize whether the driver's face or body has unnecessary movement. The use of pre-trained Deep Convolitional Neural Network (DCNN) models enables high accuracy in relatively short time, and has the advantage of overcoming limitations in collecting a small number of driver behavior learning data. The proposed method can be applied to an intelligent vehicle safety driving support system, such as driver drowsy driving detection and abnormal driving detection.

A Review of Public Datasets for Keystroke-based Behavior Analysis

  • Kolmogortseva Karina;Soo-Hyung Kim;Aera Kim
    • Smart Media Journal
    • /
    • v.13 no.7
    • /
    • pp.18-26
    • /
    • 2024
  • One of the newest trends in AI is emotion recognition utilizing keystroke dynamics, which leverages biometric data to identify users and assess emotional states. This work offers a comparison of four datasets that are frequently used to research keystroke dynamics: BB-MAS, Buffalo, Clarkson II, and CMU. The datasets contain different types of data, both behavioral and physiological biometric data that was gathered in a range of environments, from controlled labs to real work environments. Considering the benefits and drawbacks of each dataset, paying particular attention to how well it can be used for tasks like emotion recognition and behavioral analysis. Our findings demonstrate how user attributes, task circumstances, and ambient elements affect typing behavior. This comparative analysis aims to guide future research and development of applications for emotion detection and biometrics, emphasizing the importance of collecting diverse data and the possibility of integrating keystroke dynamics with other biometric measurements.

Effect of Age on Judgment in Driving: A Simulation Study (운전 수행에서 판단의 정확성에 미치는 연령의 효과: 운전 시뮬레이션 연구)

  • Lee, Joon-Bum;Kim, Bi-A;Lee, Se-Won;Lee, Jae-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • The purpose of the present study was to investigate the age difference in driving behavior(more specifically, left-turn). The participants were instructed to report whether they can turn left their car in the T-shape road(road and other vehicles' behavior relating to driver's tasks were recorded in advance and projected the simulation screen) after the leading vehicle passed them(i.e., before the target vehicle arrived). The participants' judgment accuracy and response bias were analyzed by using signal detection theory. The results showed that the old group tended to be less sensitive but more confident in their judgement of turning left their car. In particular, both age groups appeared to more depend on the distance from observation location to approaching vehicle rather than arrival times or driving speeds of the approaching vehicle.

A Malware Variants Detection Method based on Behavior Similarity (행위 유사도 기반 변종 악성코드 탐지 방법)

  • Joe, Woo-Jin;Kim, Hyong-Shik
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.25-32
    • /
    • 2019
  • While the development of the Internet has made information more accessible, this also has provided a variety of intrusion paths for malicious programs. Traditional Signature-based malware-detectors cannot identify new malware. Although Dynamic Analysis may analyze new malware that the Signature cannot do, it still is inefficient for detecting variants while most of the behaviors are similar. In this paper, we propose a detection method using behavioral similarity with existing malicious codes, assuming that they have parallel patterns. The proposed method is to extract the behavior targets common to variants and detect programs that have similar targets. Here, we verified behavioral similarities between variants through the conducted experiments with 1,000 malicious codes.