• Title/Summary/Keyword: Behavior detection

Search Result 935, Processing Time 0.026 seconds

Directing the turning behavior of carp using virtual stimulation

  • Kim, Cheol-Hu;Kim, Dae-Gun;Kim, Daesoo;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.39-51
    • /
    • 2017
  • Fishes detect various sensory stimuli, which may be used to direct their behavior. Especially, the visual and water flow detection information are critical for locating prey, predators, and school formation. In this study, we examined the specific role of these two different type of stimulation (vision and vibration) during the obstacle avoidance behavior of carp, Cyprinus carpio. When a visual obstacle was presented, the carp efficiently turned and swam away in the opposite direction. In contrast, vibration stimulation of the left or right side with a vibrator did not induce strong turning behavior. The vibrator only regulated the direction of turning when presented in combination with the visual obstacle. Our results provide first evidence on the innate capacity that dynamically coordinates visual and vibration signals in fish and give insights on the novel modulation method of fish behavior without training.

Detection of System Abnormal State by Cyber Attack (사이버 공격에 의한 시스템 이상상태 탐지 기법)

  • Yoon, Yeo-jeong;Jung, You-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1027-1037
    • /
    • 2019
  • Conventional cyber-attack detection solutions are generally based on signature-based or malicious behavior analysis so that have had difficulty in detecting unknown method-based attacks. Since the various information occurring all the time reflects the state of the system, by modeling it in a steady state and detecting an abnormal state, an unknown attack can be detected. Since a variety of system information occurs in a string form, word embedding, ie, techniques for converting strings into vectors preserving their order and semantics, can be used for modeling and detection. Novelty Detection, which is a technique for detecting a small number of abnormal data in a plurality of normal data, can be performed in order to detect an abnormal condition. This paper proposes a method to detect system anomaly by cyber attack using embedding and novelty detection.

(Effective Intrusion Detection Integrating Multiple Measure Models) (다중척도 모델의 결합을 이용한 효과적 인 침입탐지)

  • 한상준;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.397-406
    • /
    • 2003
  • As the information technology grows interests in the intrusion detection system (IDS), which detects unauthorized usage, misuse by a local user and modification of important data, has been raised. In the field of anomaly-based IDS several artificial intelligence techniques such as hidden Markov model (HMM), artificial neural network, statistical techniques and expert systems are used to model network rackets, system call audit data, etc. However, there are undetectable intrusion types for each measure and modeling method because each intrusion type makes anomalies at individual measure. To overcome this drawback of single-measure anomaly detector, this paper proposes a multiple-measure intrusion detection method. We measure normal behavior by systems calls, resource usage and file access events and build up profiles for normal behavior with hidden Markov model, statistical method and rule-base method, which are integrated with a rule-based approach. Experimental results with real data clearly demonstrate the effectiveness of the proposed method that has significantly low false-positive error rate against various types of intrusion.

A Behavior based Detection for Malicious Code Using Obfuscation Technique (우회기법을 이용하는 악성코드 행위기반 탐지 방법)

  • Park Nam-Youl;Kim Yong-Min;Noh Bong-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.17-28
    • /
    • 2006
  • The appearance of variant malicious codes using obfuscation techniques is accelerating the spread of malicious codes around the detection by a vaccine. n a system does not patch detection patterns for vulnerabilities and worms to the vaccine, it can be infected by the worms and malicious codes can be spreaded rapidly to other systems and networks in a few minute. Moreover, It is limited to the conventional pattern based detection and treatment for variants or new malicious codes. In this paper, we propose a method of behavior based detection by the static analysis, the dynamic analysis and the dynamic monitoring to detect a malicious code using obfuscation techniques with the PE compression. Also we show that dynamic monitoring can detect worms with the PE compression which accesses to important resources such as a registry, a cpu, a memory and files with the proposed method for similarity.

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

Neural Net Application Test for the Damage Detection of a Scaled-down Steel Truss Bridge (축소모형 강트러스 교량의 손상검출을 위한 신경회로망의 적용성 검토)

  • Kim, Chi-Yeop;Kwon, Il-Bum;Choi, Man-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.137-147
    • /
    • 1998
  • The neural net application was tried to develop the technique for monitoring the health status of a steel truss bridge which was scaled down to 1/15 of the real bridge for the laboratory experiments. The damage scenarios were chosen as 7 cases. The dynamic behavior, which was changed due to the breakage of the members, of the bridge was investigated by finite element analysis. The bridge consists of single spam, and eight (8) main structural subsystems. The loading vehicle, which weighs as 100 kgf, was operated by the servo-motor controller. The accelerometers were bonded on the surface of 7 cross-beams to measure the dynamic behavior induced by the abnormal structural condition. Artificial neural network technique was used to determine the severity of the damage. At first, the neural net was learnt by the results of finite element analysis, and also, the maximum detection error was 3.65 percents. Another neural net was also learnt, and verified by the experimental results, and in this case, the maximum detection error was 1.05 percents. In future study, neural net is necessary to be learnt and verified by various data from the real bridge.

  • PDF

A Novel Jamming Detection Technique for Wireless Sensor Networks

  • Vijayakumar, K.P.;Ganeshkumar, P.;Anandaraj, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4223-4249
    • /
    • 2015
  • A novel jamming detection technique to detect the presence of jamming in the downstream direction for cluster based wireless sensor networks is proposed in this paper. The proposed technique is deployed in base station and in cluster heads. The proposed technique is novel in two aspects: Firstly, whenever a cluster head receives a packet it verifies whether the source node is legitimate node or new node. Secondly if a source node is declared as new node in the first step, then this technique observes the behavior of the new node to find whether the new node is legitimate node or jammed node. In order to monitor the behavior of the existing node and new node, the second step uses two metrics namely packet delivery ratio (PDR) and received signal strength indicator (RSSI). The rationality of using PDR and RSSI is presented by performing statistical test. PDR and RSSI of every member in the cluster is measured and assessed by the cluster head. And finally the cluster head determines whether the members of the cluster are jammed or not. The CH can detect the presence of jamming in the cluster at member level. The base station can detect the presence of jamming in the wireless sensor network at CH level. The simulation result shows that the proposed technique performs extremely well and achieves jamming detection rate as high as 99.85%.

Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization (가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적)

  • An, Sung-Tae;Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.

Activity Object Detection Based on Improved Faster R-CNN

  • Zhang, Ning;Feng, Yiran;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.416-422
    • /
    • 2021
  • Due to the large differences in human activity within classes, the large similarity between classes, and the problems of visual angle and occlusion, it is difficult to extract features manually, and the detection rate of human behavior is low. In order to better solve these problems, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multi-object recognition and localization through a second-order detection network, and replaces the original feature extraction module with Dense-Net, which can fuse multi-level feature information, increase network depth and avoid disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects, and enhancing the network detection accuracy under multiple objects. During the experiment, the improved Faster R-CNN method in this article has 84.7% target detection result, which is improved compared to other methods, which proves that the target recognition method has significant advantages and potential.