• Title/Summary/Keyword: Behavior Of Crowd

Search Result 55, Processing Time 0.022 seconds

EVACUATION SIMULATION SYSTEM APPLIED TO THE CONVENTION HALL AND THE HOSPITAL

  • Tomomatsu, Keiko;Nakano, Kazuo;Uehera, Shigeo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.380-386
    • /
    • 2001
  • In considering the issue of safely during emergency building evacuations, it is important to be able to make accurate predictions about evacuation conditions and to be able to assess safety levels. Simulation techniques are often used to make predictions regarding evacuation conditions. The two main types of prediction models are crowd flow models and discrete models. We have developed an evacuation simulation system based on the discrete model which attempts to address the implementation problems of existing evacuation models. Our model incorporates characteristics such as evacuee profiles and spatial considerations, and is capable of dynamically predicting the behavior of individual evacuees. The simulation system is primarily designed for buildings in which many people are incapacitated and require helpers in order to evacuate, such as hospitals and facilities fur the elderly. We show the results that the evacuation simulation system was used to perform two trial simulations.

  • PDF

Abnormal Crowd Behavior Detection in Video Surveillance System (영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Park, Seung-Jin;Oh, Seung-Geun;Kang, Bong-Su;Park, Dai-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.347-350
    • /
    • 2011
  • 감시카메라 환경에서의 비정상 집단행동 탐지란 감시카메라로부터 유입되는 영상에서 다중 객체가 위험에 처한 상황을 신속하고 정확하게 탐지 및 인식하는 분야를 말한다. 본 논문에서는 CCTV 등과 같은 감시카메라 환경에서 움직임 벡터와 SVDD를 이용하여 집단내의 비정상 상황을 탐지하는 프로토타입 시스템을 제안한다. 제안된 시스템은 움직임 벡터를 이용하여 영상내의 움직임 정보를 추출 표현하였으며, 비정상 집단행동의 판별 문제를 실용적 차원의 단일 클래스 분류 문제로 재해석하여 단일 클래스 SVM의 대표적 모델인 SVDD를 탐지자로 설계하였다. 공개적으로 사용 가능한 벤치마크 데이터 셋인 PETS 2009와 UMN을 이용하여 본 논문에서 제안한 비정상 집단행동 탐지 시스템의 성능을 실험적으로 검증한다.

A Basic Study on Foldable Container - Based on Toy-Foldable Container Product

  • Lin, Zhang;Lee, Sung-Pil;Hyoung, Sung-Eun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.114-117
    • /
    • 2008
  • The purpose of this study was to quantify the emotional design and designs a kind of toy-foldable container to create new market and occupy it.Through analyizing the characteristics of activities and behavior about the target using-crowd, we get the direction for this design.And design a kind of new container for loading toys, with the mat's function and can be folded convenient too.This will meet demand of the customers, and the most important point is to create new market.

  • PDF

Experimental and finite element studies of special-shape arch bridge for self-balance

  • Lu, Pengzhen;Zhao, Renda;Zhang, Junping
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.37-52
    • /
    • 2010
  • Special-shape arch bridge for self-balance (SBSSAB) in Zhongshan City is a kind of new fashioned spatial combined arch bridge composed of inclined steel arch ribs, curved steel box girder and inclined suspenders, and the mechanical behavior of the SBSSAB is particularly complicated. The SBSSAB is aesthetic in appearance, and design of the SBSSAB is artful and particular. In order to roundly investigate the mechanical behavior of the SBSSAB, 3-D finite element models for spatial member and shell were established to analyze the mechanical properties of the SBSSAB using ANSYS. Finite element analyses were conducted under several main loading cases, moreover deformation and strain values for control section of the SBSSAB under several main loading cases were proposed. To ensure the safety and rationality for optimal design of the SBSSAB and also to verify the reliability of its design and calculation theories, the 1/10 scale model tests were carried out. The measured results include the load checking calculation, lane loading and crowd load, and dead load. A good agreement is achieved between the experimental and analytical results. Both experimental and analytical results have shown that the SBSSAB is in the elastic state under the planned test loads, which indicates that the SBSSAB has an adequate load-capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the SBSSAB.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Passenger Ship Evacuation Simulation Considering External Forces due to the Inclination of Damaged Ship (손상 선박의 자세를 고려한 여객선 승객 탈출 시뮬레이션)

  • Ha, Sol;Cho, Yoon-Ok;Ku, Namkug;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • This paper presents a simulation for passenger ship evacuation considering the inclination of a ship. In order to describe a passenger's behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. To calculate inclined angle of damaged ship, static equilibrium equations of damaged ship are derived using "added weight method". Using these equations, physical external forces due to the inclination of a ship act on the body of each passenger. The crowd behavior of the passenger is considered as the flock behavior, a form of collective behavior of a large number of interacting passengers with a common group objective. Passengers can also avoid an obstacle due to penalty forces acting on their body. With the passenger model and forces acting on its body, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of ship's inclination on the evacuation time are confirmed.

Passenger Ship Evacuation Simulation using Algorithm for Determination of Evacuating Direction based on Walking Direction Potential Function (보행 방향 포텐셜 함수 기반의 탈출 경로 결정 알고리즘을 이용한 여객선 승객 탈출 시뮬레이션)

  • Ha, Sol;Cho, Yoon-Ok;Ku, Namkug;Park, Kwangphil;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.307-313
    • /
    • 2013
  • This paper presents a simulation for passenger ship evacuation considering determination of evacuating direction based on walking direction potential function. In order to determine walking direction of a passenger, his/her position in two dimensional plane was adopted as a design variable, and fixed boundaries such as walls and obstacles were adopted as constraints. To solve this optimum problem, a walking direction potential function was adopted as an objective function. This potential function was configured as a kind of penalty function and it contained two components. One is a potential function concerned with the distance to the destination, and other is a potential function based on the effect of walls and obstacles. To determine evacuating direction, this problem was solved by minimizing the walking direction potential function every unit time during the simulation. The crowd behavior of the passenger consisted of the flock behavior, a form of collective behavior of a large number of interacting passengers with a common group. With the proposed algorithm, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) were implemented and the direction of passengers and total evacuation time was analyzed.

Passenger evacuation simulation considering the heeling angle change during sinking

  • Kim, Hyuncheol;Roh, Myung-Il;Han, Soonhung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.329-343
    • /
    • 2019
  • In order to simulate the evacuation simulation of a ship during a sinking, the slope angle change of the ship must be reflected during the simulation. In this study, the passenger evacuation simulation is implemented by continuously applying the heeling angle change during sinking. To reflect crowd behavior, the human density and the congestion algorithm were developed in this research and the walking speed experiment in the special situation occurring in the inclined ship was conducted. Evacuation simulation was carried out by applying the experimental results and the change of the walking speed according to the heeling angle of the ship. In order to verify the evacuation simulation, test items suggested by International Maritime Organization (IMO) and SAFEGUARD Validation Data Set conducted on a large Ro-PAX ferry (SGVDS 1) which performed real evacuation trial in full-scale ships were performed and the results of simulation were analyzed. Based on hypothetical scenario of when a normal evacuation command is delivered to the passengers of MV SEWOL in time, we predicted and analyzed the evacuation process and the number of casualties.

Triggering of Herding Instincts due to COVID-19 Pandemic in Pakistan Stock Exchange

  • JABEEN, Shaista;RIZAVI, Sayyid Salman;NASIR, Adeel
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.10
    • /
    • pp.207-218
    • /
    • 2021
  • The present research intends to examine the herding aspect during the COVID-19 outbreak. The study is conducted to achieve specific objectives, so the underlying sampling technique is purposive sampling. The considered data source is the Pakistan Stock Exchange (PSX). Daily stock prices of 528 listed companies in PSX have been taken from the official website of PSX from 1998 to 2021. The current study envisions investigating the herding aspects for pre-pandemic and the time covering the pandemic period. The study has also targeted ten sectors of PSX. The present study's motive is to investigate investors' herding prospects before and during the pandemic in the Pakistan Stock Exchange (PSX) and its selected sectors. Daily closing stock prices of listed companies have been collected from the official website of PSX to calculate the stock returns. The Cross-Sectional Absolute Deviation (CSAD) has been used as a herding measure. Findings revealed that herding has not been observed in PSX during both time spans and even not during the bullish and bearish trends. However, robust sectoral evidence has been observed during the pandemic. It implies that investors in PSX tend to follow the crowd irrespective of making their own decisions to avoid further losses.

The Effect of Amplitude, Event, and Duration of Electrical Stimulation on the Evacuation Velocity of Rodents: An Evacuation Experiment (설치류 대피 실험에서의 전기 자극의 크기, 횟수, 지속시간의 대피 속도에 대한 영향)

  • Kim, Somi;Nguyen, Duyen Thi Hai;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • Despite advances in technology, crushing accidents still occur during emergency evacuations of crowded public spaces. To prevent crushing accidents, it is necessary to understand the flow of pedestrians during evacuation scenarios through experiments. Since experiments with humans can generate real accidents, we performed experiments on rodents to approximate human behavior. To trigger an emergency evacuation response, we applied electrical stimulation to the feet of the rodents. Although electrical stimulation has been applied to mice in many experiments, studies on the intensity and pattern of electric stimulation required to evoke a rapid evacuation response in mice is still lacking. In this study, we experimentally investigated how the evacuation flow of mice changes according to the amplitude, event, and duration of electric stimulation.