• Title/Summary/Keyword: Beer wastes

Search Result 5, Processing Time 0.021 seconds

Optimal substrate mixture ratio for mycelial growth of oyster mushroom in Lao PDR (라오스 느타리버섯 균사배양 배지의 적정 배합비율)

  • Chang, Hyun-You;Viengkham, Sengsoulivong;Phannourath, Viravahn;Baek, Woon-Ho;Yang, Kyu-Nam;Lee, Yong-Ha;Chang, Jong-Geun
    • Journal of Mushroom
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 2007
  • This study was carried out to investigate the mycelial growth and density of Laos oyster mushroom treated straw, rice hull, mixture rate of straw and rice hull and beer wastes respectively. In case of straw 70%, rice hull 40%, 50%, straw and rice hull 4 : 6, soil type and yeast type of Laos beer wastes mixture, the mycelial growth and density are the best respectively.

  • PDF

Development of Substrate and Cultural Method for the Cultivation of Pleurotus sajor-caju (느타리 버섯(Pleurotus sajor-caju) 재배를 위한 기질 및 재배방법의 개발)

  • Hong, B.S.;Kim, S.J.;Song, C.H.;Hwang, S.Y.;Yang, H.C.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.354-359
    • /
    • 1992
  • The effect of the addition of various vegetable oils on the mycelial growth was studied. Most vegetable oils were proved to be stimulative for the mycelial growth, and the best mycelial growth (12 mg/ml) was obtained with the addition of cotton seed oil. Several agricultural wastes i.e., rice straw, peanut hull, sawdust, rice hull, cocoa hull, coffee waste and beer waste were empolyed as substrates for sporophore production of p. sajor-caju. The biological efficiency(BE) for sporophore productions of rice straw and peanut hull were 36.4% and 32.6%, respectively. The highest yield of sporophore was obtained from the mixture of rice straw (50%) and beer waste (50%)(BE 109.6%) followed by peanut hull (50%) and beer waste (50%)(BE; 74.5%).

  • PDF

Utilization of Industrial Wastes for Organic Fertilizer Use (유기질비료(有機質肥料) 자원(資源)으로서의 산업폐기물(産業廢棄物))

  • Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.195-206
    • /
    • 1979
  • Where the industrial waste is increasing in number of kind and in quantities by the industrialization and population increases, the pollution problem is not only national but grobal question of the day. This paper is trying to invite attentions by the people who are working in both sector-natural sciences and industries in reviewing limited reports and materials. 1. By the chemical evaluation of over 20 industrial waste produced in Korea, potential wastes for commercial fertilizer would be wastes from alcohol fermantation, beer brewery, leather processing, synthetic fiber, and coffee grounds. 2. The composition of city waste is differ from other countries and sludge cake from human feces processing is promising one in the organic matter and phosphate content particularly. However, the content of heavy matals, specific order, and availability of phosphate are the bottle-neck for the development. 3. There is one commercial fertilizer from industrial waste in the market. It is very reasonable in the content of nitrogen and organic matter, and its formulation and responeses on crops. 4. Discussions were also given on the general problems in processing and marketing of fertilizers from industrial waste, however, scientists and industrial owners have to pay more attention on the development of fertilizers from tire industrial wastes because of vital environmental protection view-point.

  • PDF

Use of Industrial Wastes as Sources of Organic Fertilizer III. Effect of Lime Added Sludge on Upland Crop of Corn (산업폐기물(産業廢棄物)의 비료화(肥料化)에 관(關)한 연구(硏究) III. 전작물(田作物)에 대(對)한 석탄첨가(石灰添加) 맥주오염(麥酒汚泥)의 비효시험)

  • Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.51-54
    • /
    • 1984
  • Fermentation waste from beer production was applied to a newly developed upland soil to evaluate the effect of lime added sludge on corn growth. The mineralization of lime added sludge was faster than that of raw sludge without lime treatment in the upland condition. It was accelerated by low C/N ratio and high lime content in the lime added sludge. The plant growth and yields of corn increased as the sludge application rate increased and so was nitrogen and organic matter contents in soil. Ammonium volatilization is considered to be high in the lime added sludge and thus the raw sludge is more promising as an organic sources.

  • PDF

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF