• Title/Summary/Keyword: Beef tallow

Search Result 167, Processing Time 0.024 seconds

Essentiality of Dietary Eicosapentaenoic Acid and Docosahexaenoic Acid in Korean Rockfish, Sebastes schlegeli (조피볼락(Sebastes schlegeli) 사료의 EPA 및 DHA 필수성)

  • LEE Sang-Min;LEE Jong Yun;HUR Sung Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.712-726
    • /
    • 1994
  • Feeding trials were conducted to determine the essentiality of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and to compare the efficiency between EPA and DHA for juvenile Korean rockfish. Fish averaging 2.1 g were fed experimental diets containing different levels of EPA or DHA, and different combinations of EPA and DHA in two separate experiments. Graded levels ($0.0{\sim}l.75\%$) of dietary EPA or DHA as ethyl esters were substituted for a part of the $8\%$ beef tallow in the basal diet. After 5 weeks of the experimental period, weight gain, chemical composition of whole body, protein and lipid retention efficiency, hepatosomatic index, and fatty acid composition of liver were measured. Daily growth rate and feed efficiency were the lowest in fish fed the diets without EPA arid DHA. These responses were effectively improved by increasing EPA or DHA in the diets up to $1.0\%$ levels, and then reached a plateau between 1.0 and $1.75\%$ levels of either EPA or DHA. Protein and lipid retention efficiency were also improved with the high levels of dietary EPA or DHA. DHA was superior to EPA at the same level of each in weight gain, feed efficiency, and protein and lipid retention efficiency. Hepatosomatic index tended to decrease with increase of the dietary EPA or DHA levels. Lipid contents of whole body were increased with levels of EPA or DHA in the diets. Dietary EPA and/or DHA levels affected directly the fatty acid composition of liver polar lipid. EPA or DHA in the liver polar lipid were increased with levels of dietary EPA or DHA, respectively, whereas those in nonpolar lipid were not affected by the dietary levels of EPA and/or DHA. These finding indicate that either of the EPA or DHA is essential for normal growth of Korean rockfish, and the essential fatty acid requirement is $1.0\%$ of EPA and/or DHA in the diet. DHA is superior to EPA as essential fatty acid, and the dietary EPA/DHA ratio of less than 1.0 may be adequate for normal growth of Korean rockfish fed a diet enough n-3HUFA (EPA and DHA).

  • PDF

Effect of Dietary Fish Oil on Lipid Peroxidation in Rats Liver and Brain During Postnatal Development (어유섭취가 출생후 발달과정의 흰 쥐의 간과 뇌조직의 지질과산화와 그 관련기능에 미치는 영향)

  • 박명희
    • Journal of Nutrition and Health
    • /
    • v.20 no.2
    • /
    • pp.111-121
    • /
    • 1987
  • Lipie peroxide formation, antiperoxidative s system and body adaptability for handling lipid p peroxide were examined in the first and second g generations of rats fed fish oil. Mackerel oil(MO) was used and four other dietary oils and fat, i.e. soybean oil(SO), perilla oil(PO), rapeseed oil(RO) and beef tallow(BT) were also employed to compare the effect of fish oil. Synthetic diets containing these five dietary fats at the level of 1O%(w/w), were given to the correspond­m ing groups of male and female rats weighing about 70 grams. After 34 days of feeding, male a and female rats were mated and their offsprings were raised throughout suckling (17, 26 days) and weanling (39 days) periods. Liver lipid pero­x xide level was highest in MO group of both first (mother rats after lactation) and second genera­t tions of 17 and 26 days old, but not of 39 days old. During suckling period, liver lipid peroxide level was well matched to total unsaturation of dietary fat. Brain lipid peroxide levels were not different among five groups. Liver $alpha$-tocopherol a and reduced glutathione (GSH) levels were lowest in MO fed first generation. In second generation, $alpha$-tocopherol level was also low in MO group, although the effect was less pronoun­c ced, but GSH level was not different from other groups. Oxidized glutathione (GSSG) level did not consistently vary by change in dietary fat. Glutathione peroxidase activity increased as young rats grew up to 39 days. Superoxide d dismutase activity change was insignificant by a age, but was shown as lowest in MO group. At the age of 26 and 39 days, liver glutatione peroxidase activity was increased as was level of lipid peroxide, suggesting that this is the one of the mechanisms responsible for body adapta­b bility for protection against the accumulation of lipid peroxide.

  • PDF

Effect of Dietary Fish Oil on Lipid Peroxidation and Antiperoxidative System in Rat Liver and Brain -Sex-related Differences- (어유(魚油)섭취가 흰쥐의 간과 뇌조직의 지질과산화물 형성과 항산화계에 미치는 영향 -성(性)의 차이를 중심으로-)

  • Choi, Kyung-Won;Park, Myungg-Hee;Chang, Kyung-Sook;Cho, Sung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.147-155
    • /
    • 1987
  • In order to examine the effect of dietary fish oil on lipid peroxide formation and antiperoxidative efficiency in liver and brain, a group of male and female rats weighing about 70 grams were fed for three months, diet containing mackerel oil(MO) at the level of 10% (w/w). Results were compared, according to sex and source of dietary fat, i.e., in addition to MO, perilla oil(PO), soybean oil(SO), rapeseed oil(RO) or beef tallow(BT). Liver lipid peroxide level was significantly higher and levels of ${\alpha}-tocopherol$ and reduced glutathione(GSH) were lower in MO group than in other groups. This phenomenon was less clear in male than in female. Liver GSH level was lower in male, compared to female, but oxidized glutathione (GSSG) level did not vary, depending on either sex or dietary fat source. Brain lipid peroxide and ${\alpha}-tocopherol$ levels were not different among five experimental groups. Activities of liver and brain glutathione peroxidase and superoxide dismutase were not changed by dietary fat source, but glutathione peroxidase activity was higher in female than in male. The present study shows (a) that there is sex-related difference in antiperoxidatiye activity and (b) that fish oil containing $C_{20-22}({\omega}3)$ fatty acids, increases body lipid peroxide level and consumes more of cellular antioxidant, although it has lower total PUFA content than perilla or soybean oils.

  • PDF

Stability of Oil-in-Water Emulsions with Different Saturation Degrees from Beef Tallow Alcoholysis Products (우지 Alcoholysis 반응물을 이용한 Oil-in-Water Emulsion의 포화도에 따른 산화특성 및 안정성 연구)

  • Zhang, Hua;Lee, Young-Hwa;Shin, Jung-Ah;Lee, Ki-Teak;Hong, Soon-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.933-940
    • /
    • 2013
  • In this study, methyl esters with different saturated fatty acids (SFA) were prepared by urea fractionation to make an oil-in-water emulsion. Emulsion characteristics (emulsion stability and oxidative stability) of the methyl ester emulsion were then studied at different percentages of methyl ester saturation (5, 28, 39, 50, and 72%, termed ${\Sigma}$SFA5, ${\Sigma}$SFA28, ${\Sigma}$SFA39, ${\Sigma}$SFA50, and ${\Sigma}$SFA72, respectively). The stability of emulsions (ES) with different SFA content was 46.0 (${\Sigma}$SFA5), 39.5 (${\Sigma}$SFA28), 32.7 (${\Sigma}$SFA39), 32.6 (${\Sigma}$SFA50), and 27.3 (${\Sigma}$SFA72). Results from Turbiscan showed that creaming or clarification, based on the backscattering intensity, was more pronounced with increases in the saturation degree of the emulsion. These results implied that the emulsions with lower saturation were more stable. During 30 days of storage, the lipid peroxide value increased for all emulsions, with the increase less pronounced with the increasing saturation of the emulsion; 1.880 (${\Sigma}$ SFA5), 1.267 (${\Sigma}$SFA28), 1.062 (${\Sigma}$SFA39), 0.342 (${\Sigma}$SFA50) and 0.153 (${\Sigma}$SFA72) mg $H_2O_2/mL$ emulsion. In addition, thiobarbituric acid reactive substances (TBARS) values were significantly lower in emulsions with high saturation (4.419 mg for ${\Sigma}$SFA50 and 4.226 mg for ${\Sigma}$SFA72) than emulsions with low saturation (6.229 mg for ${\Sigma}$SFA5, 6.801 mg for ${\Sigma}$SFA28 and 6.246 mg for ${\Sigma}$SFA39). In conclusion, the emulsions with a higher saturation degree of methyl esters showed lower emulsion stability but better oxidation stability.

The Effects of Mortierella alpina Fungi and Extracted Oil (Arachidonic Acid Rich) on Growth and Learning Ability in Dam and Pups of Rat (흰쥐의 Mortierella alpina 균사체와 추출유의 섭취에 의한 생육 효과와 학습능력 비교)

  • 이승교;강희윤;박영주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1084-1091
    • /
    • 2002
  • Mortierella alpina, a common soil fungus, is the most efficient organism for production of production acid presently known. Since arachidonic acid are important in human brain and retina development, it was undertaken the growing effect containing diet as a food ingredient. Arachidonic acid rich oil derived from Mortierella alpina, was subjected to a program of studies to establish for use in diet supplement. This study was compared the growth and learning effect of fungal oil rich in arachidonic acid by incorporated into diets ad libitum. Sprague-Dawley rats received experimental diets 5 groups (standard AIN 93 based control with beef tallow, extract oil 8%, and 4%, and Mortierella alpina in diet 10% and 20%) over all experiment duration (pre-mating, mating, gestation, lactation, and after weaning 4 weeks). Pups born during this period consumed same diets after wean for 4 weeks. There was no statistical significance of diet effects in reproductive performance and fertility from birth to weaning. But the groups of Mortierella alpine diet were lower of weight gain and diet intake after weaning. The serum lipids were significantly different with diet groups, higher TG in LO (oil 4%) group of dams, and higher total cholesterol in LF (M. alpina 10%) of pups, although serum albumin content was not significantly different in diet group. The spent-time and memory effect within 4 weeks of T-Morris water maze pass test in dam and 7-week- age pups did not differ in diet groups. On the count of backing error in weaning period of pups was lower in HO(extracted oil 8%) group. In the group of 10% and 20% Mortierella alpina diet, DNA content was lower in brain with lower body weight, but liver DNA relative to body weight was higher than control. Further correlation analyses would be needed DNA and arachidonic acid intakes, with Mortierella alpina diet digestion rate.

Effect of Fish Oil Diet on Blood Pressure and Lipid Metabolism in Spontaneously Hypertensive Rat -Changes in Serum Lipid Status- (어유식이가 본태성고혈압쥐(SHR)혈압 및 지질대사에 미치는 영향 -혈청지질상태를 중심으로-)

  • Shin, Eung-Nam;Bae, Bok-Seon;Lee, Won-Jong;Cho, Sung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 1989
  • The present study was designed to examine the effect of dietary fish oil on blood pressure and lipid status of serum. Weanling SHRs and normotensive Wistars were fed a diet containing 5%(w/w) mackerel oil(MO), soybean oil(SO) or beef tallow(BT) for 8 weeks. Growth rate was not significantly different among three dietary groups, but that of SHRs was silightly lower than that of Wistars. SHRs showed higher systolic blood pressure than Wistar rats from the beginning and become hypertensive (over 150mmHg) after 6 week s of feeding period. The MO group of SHRs showed the lowest blood pressure at the 8th week of feeding period but that of Wistars showed similar values with other groups. Tissue weights of liver, heart and kidney were not different amongdietary aroups in Wistars and SHRs. However, heart and kidney weights of SHRs were significantly higher than those of Wistars. Microscopic examination revealed that endomysium of heart tissue and urinary space of kidney were narrowed in SHRs. Serum total and HDL-cholesterol showed similar values among three different dietary fat groups but triglyceride levels were significantly low in MO groups. HDL-cholesterol levels of SHRs were lower than those of Wistars, as well as the fractions of total HDL, the sum of HDL and $HDL_{2+3}$, while VLDL fractions were higher in SHRs. MO groups had the lower values of $HDL_1,\;HDL_{2+3}$ratio than SO and BT groups. Major dietary fatty acids were more or less incorporated into serum phospholipid and triglyceride, resulting in the characteristic fatty acid profile of each dietary group. Incorporation of $C_{18:2}({\omega}_6)$ in SO groups were pronounced, but the degree of incorporation was lower in SHRs. In Mo groups, $C_{22:6}({\omega}_3)$ levels were inreased in triglyceride. It is suggested that these changes in serum lipid fatty acid composition are related to the different patterns of serum lipid by alteration of dietary fats.

  • PDF

Effects of Different Types of Dietary Fat on Muscle Atrophy According to Muscle Fiber Types and PPAR${\delta}$ Expression in Hindlimb-Immobilized Rats (지방의 종류가 다른 식이의 섭취가 하지고정 흰 쥐의 근 섬유별 근 위축과 PPAR${\delta}$ 활성에 미치는 영향)

  • Lee, Ho-Uk;Park, Mi-Na;Lee, Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.355-365
    • /
    • 2011
  • This study investigated how dietary fat affects muscle atrophy and lipid metabolism in various muscles during hindlimb immobilization in rats. Twenty-four male Sprague?Dawley rats had their left hindlimb immobilized and were divided into four groups by dietary fat content and composition. The contralateral hindlimb (control) was compared with the immobilized limb in all dietary groups. Rats (n = 6/group) were fed a 4% corn oil diet (CO), 2.6% corn oil + 1.4% fish oil diet (FO), 30% corn oil diet (HCO), or a 30% beef tallow diet (HBT)after their hind limbs were immobilized for 10 days. Data were collected for the gastrocnemius, plantaris and soleus muscles. Muscle atrophy was induced significantly after 10 days of hindlimb immobilization, resulting in significantly decreased muscle mass and total muscle protein content. The protein levels of peroxisome proliferator activated receptor ${\delta}$ (PPAR${\delta}$) in the plantaris, gastrocnemius, and soleus increased following hindlimb immobilization irrespective of dietary fat intake. Interestingly, the PPAR${\delta}$ mRNA level in the plantaris decreased significantly in all groups and that in the FO group was lower than that in the other groups. The soleus PPAR${\delta}$ mRNA level decreased significantly following hindlimb immobilization in the FO group only. Muscle carnitine palmitoyl transferase 1 (mCPT1) mRNA level was not affected by hindlimb immobilization. However, the mCPT1 mRNA level in the FO group was significantly lower in the plantaris but higher in the soleus than that in the other groups. The pyruvate dehydrogenase kinase 4 (PDK4) mRNA level in the plantaris decreased significantly, whereas that in the soleus increased significantly following hindlimb immobilization. The plantaris, but not soleus, PDK4 mRNA level was significantly higher in the FO group than that in the CO group. The increased PPAR${\delta}$ protein level following hindlimb immobilization may have suppressed triglyceride accumulation in muscles and different types of dietary fat may have differentially affected muscle atrophy according to muscle type. Our results suggest that ${\omega}$-3 polyunsaturated fatty acids may suppress muscle atrophy and lipid accumulation by positively affecting the expression level and activity of PPAR${\delta}$ and PPAR${\delta}$-related enzymes, which are supposed to play an important role in muscle lipid metabolism.