• Title/Summary/Keyword: Bedrock depth

Search Result 127, Processing Time 0.029 seconds

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (I) - Problem Statements of the Current Seismic Design Code (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (I) - 국내 내진설계기준의 문제점 분석)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.39-50
    • /
    • 2006
  • Site response analyses were peformed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean Peninsula. The she characteristics, particularly the shear wave velocities and the depth to bedrock, are compared to those in the western United States. The site coefficients of short period $(F_a)$ and the long period $(F_v)$ obtained from this study were significantly different compared to 1997 Uniform Building Code (1997 UBC). $F_a$ underestimated the motion in shot period ranges and $F_v$ overestimated the motion in mid period ranges in Korean seismic guideline. It is found that the existing Korean seismic design code were is required to be modified considering geological site conditions in Korea for the reliable estimation of sue amplification. Problems of the current seismic design code were dicussed in this paper and the development of site classification method and modification of desing response spectra were discussed in the companion papers(II-Development of Site Classification System and III-Modification of Dosing Response Specra).

A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula (국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭 계수 및 지반 분류 체계 제안)

  • Sun Chang-Guk;Chung Choong-Ki;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.101-115
    • /
    • 2005
  • For the site characterization at two inland areas, Gyeongju and Hongsung, which represent geomorphic and geologic characteristics of inland region in Korea, in-situ seismic tests containing borehole drilling investigations and resonant column tests were peformed and site-specific seismic response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in western US, from which the site coefficients and site classification system in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity $(V_s)$ of the upper 30 m $(V_s30)$, ranging between 250 and 650 m/s. According to the acceleration response spectra determined from the site response analyses, the site coefficients specified in the current Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients, $F_a$ for short-period and $F_v$ for mid-period, were re-evaluated and the site classification system, in which sites C and D were subdivided according to $V_s20,\;V_s15,\;and\;V_s10$ together with the existing $V_s30$ was introduced accounting for the local geologic conditions at inland region of the Korean peninsula. The proposed site classification system in this paper is still rudimentary and requires modification.

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.

Geophysical Surveys for the Detection of Gallery and Geomembrane at the Imcheon Abandoned Mine (임천 폐광산의 지하갱도와 인공차수막의 탐지를 위한 지구물리탐사)

  • 김지수;한수형;이경주;최상훈
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.501-510
    • /
    • 2003
  • Several geophysical surveys(electrical resistivity, electromagnetic, seismic refraction, CPR) were conducted to primarily investigate the gallery and the geomembrane at an abandoned mine(Imcheon mine). The subsurface structure mapped from seismic refraction survey mainly consists of three velocity layers(>1000 m/s, 1000∼2000 m/s,<2000 m/s). Top of the bedrock, whose velocities exceed 2000 m/s, appears to be at depth of 7.5∼10m. Higher resistivities (of ten thousands-hundred of thousands ohm-m) are interpreted to be associated with a open(cavities) gallery. The events at depth of approximately 0.5∼0.7m in GPR sections are probably caused by high-density-poly-ethylene geomembrane. Taking into consideration of the differences in the spatial resolution between georadar and electrical surveys, the events of geomembrane correspond to the top of the high resistivities at depth of about 2m. The segments, characterized with the higher conductivities in the electromagnetic data and the lower resistivities in the electrical resistivity data, are probably associated with surface water or tear zone of geomembrane.

Design and construction of shaft for rock caverns in Singapore

  • Zhang, Xiao-Ping;Lu, Ming;Mao, Dawei;Zhao, Zhiye;Hao, Liu
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.173-194
    • /
    • 2017
  • Access shaft is of critical importance to the construction and operation of underground rock caverns. It usually has a relatively large cross-section and penetrates through fill materials, soil layers, and weathered rocks before reaching the caverns excavated in solid bedrock. In this paper, the design and construction of vertical shafts are reviewed in terms of diameter, depth, geological conditions, and support structure. Three shaft alternatives, namely alternative I: vertical shaft with spiral roads, alternative II: upper shaft with spiral roads & lower tunnels, alternative III: plain shaft, are proposed based on a simplified geological profile of the Jurong formation, Singapore. The advantages and limitations of the three types of shafts are discussed. The key issues relating to shaft design and construction, such as the shaft sinking, water control, support structure, are also discussed with a series of solutions provided, such as the sequential excavation, pre-grouting and diaphragm walls.

An Analysis on the Failure Mechanism of Slope behind a Plant Complex of Gimhae due to Typhoon Rusa (태풍 루사에 의한 김해 OO단지 사면붕괴 발생원인 분석)

  • Kang, In-Kyu;Ryu, Jeong-Soo;Kim, Hong-Taek;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.263-266
    • /
    • 2007
  • In this paper, analysis results on the failure of slope behind a Plant Complex of Gimhae due to typhoon Rusa in 2002 are introduced. The left side of the slope was reinforced by soil nails and the right side of the slope was going to construct slope reinforcement works. In the slope failure, the damage area is about $34,000m^2$, the lower width of slope failure is about 230m, the upper width of slope failure is about 50m, and the height of slope failure is about 120m. The elevation of a bedrock in the right side of the slope was lower than the left side of the slope. Due to the depth of weathered soils and weathered rocks in right side of the slope was thick, it will be expected that the effects of pore-water pressure during the rainfalls are large. For the analysis of the failure mechanism, 3-dimensional numerical analysis was carried out by FLAC-3D.

  • PDF

Development of Backcalculation Algorithm of Pavement System Using Matrix Solution Technique (매트릭스 해법을 이용한 포장체 각 층의 탄성계수 추정 역산알고리즘의 개발)

  • Kim, Soo Il;Lee, Kwang Ho;Park, Byung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.495-508
    • /
    • 1994
  • A backcalculation procedure to determine the layer moduli of flexible pavement structure is developed using matrix solution technique. Forward calculation computer program adopted in this backcalculation procedure is SINELA which is one of layered elastic computer programs. Data base system is used as a tool for setting initial seed moduli and depth to virtual bedrock in backcalculation procedure. The validity and applicability of the proposed backcalculation procedure are verified through various numerical model tests. From the results of comparison analysis with FPEDD1, it is found that the proposed procedure gives more efficient and accurate results.

  • PDF

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

Determination of Site Classification Method in the Korean Peninsula Based On NYCDOT2008(2008 New York City DOT Seismic Design Guidelines) (NYCDOT2008 기준을 이용한 국내 지반의 지반분류방법 결정)

  • Kang, Ho-Deok;Kim, Ki-Sang;Sun, Chang-Kuk;Kim, Myung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.777-784
    • /
    • 2010
  • In the current Korean seismic design guide, the site classification and the corresponding site coefficients were determined based on the UBC-1997 (Uniform Building Code). In order to develop the current site classification system, it is important to compare the local site conditions in Korea to other countries which have similar seismic design guides. In the eastern United States, New York City(40degrees 45minutes north latitude, 73degrees 59minutes west longitude) suggested that current design guidelines are unsuitable to shallow bedrock depth sites. So the 3-parameter methods are performed for new criteria in New York City. In this study, site response analyses were performed at 181 study sites using one-dimensional equivalent linear to evaluate the site-specific earthquake ground motions at inland areas in the Korean peninsula and reclassify the results according to similar ground motions using the 3-parameter methods. It is effective that multi-parameter methods for Korean site characteristics in comparison with single parameter method.

  • PDF

The Settlement Characteristics of Large Drilled Shafts Embedded into the Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong, Won-Pyo;Yea, Geu-Guwen;Nam, Jung-Man;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this study is to investigate the settlement characteristics of large drilled shafts embedded into bed rocks. To perform this research, 35 pile load test results for the large drilled shafts are used, because these deep foundations generally used as substructure systems for grand bridges. In case of the yield load can not be easily determined by load(P)-settlement(S) curve from the pile load test at the maximum loads, the standard settlements which can determine a yield load is established. The residual settlement equation of pile embedded in gneiss and igneous rocks is presented in this study. Also a equation is proposed to characterize the relationship between loads and elastic settlements in pile load tests on the large drilled shaft embedded into bedrock. Then, large drilled shaft's settlement characteristics are examined on pile length, pile diameter and pile's socked depth into rock at the pile tip.

  • PDF