• 제목/요약/키워드: Bedrock

검색결과 516건 처리시간 0.027초

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구 (A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel)

  • 박종호;엄기영;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

An approach for deformation modulus mechanism of super-high arch dams

  • Wu, Bangbin;Niu, Jingtai;Su, Huaizhi;Yang, Meng;Wu, Zhongru;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.557-566
    • /
    • 2019
  • The reservoir basin bedrock produced significant impact on the long-term service safety of super-high arch dams. It was important for accurately identifying geomechanical parameters and its evolution process of reservoir basin bedrock. The deformation modulus mechanism research methods of reservoir basin bedrock deformation modulus for super-high arch dams was carried out by finite element numerical calculation of the reservoir basin bedrock deformation and in-situ monitoring data analysis. The deformation modulus inversion principle of reservoir basin bedrock in a wide range was studied. The convergence criteria for determining the calculation range of reservoir basin of super-high arch dams was put forward. The implementation method was proposed for different layers and zones of reservoir basin bedrock. A practical engineering of a super-high arch dam was taken as the example.

내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안 (Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal)

  • 조형익;;김동수
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

기반암의 전단파속도를 고려한 지진파의 통과시차가 건물의 지진거동에 미치는 영향 (Wave Passage Effect on the Seismic Response of a Building considering Bedrock Shear Wave Velocity)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.89-94
    • /
    • 2014
  • Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil-bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

전도성 충적지반의 지질 및 하부 기반암 조사를 위한 지하레이다(GPR)의 적용 (Application of GPR Technology for Detecting Bedrock under Conductive Overburden and Geological Survey)

  • 윤운상;배성호;김병철;김학수
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.114-122
    • /
    • 1995
  • The principle and applications of GPR(Ground Penetrating Radear) are familiar to engineering geologists and geophsicists as very attractive technique for continuous high resolution images of the subsurface. However, the main limitation of GPR is obviously related to presence of clayey or silty conductive soils, resulting in complete attenuation of radar signals. This difficulty gives hesitation for the exploration of the deeper targets for example detecting bedrock, particularly in Korean situation that most regions have conductive overburden. In order to prove usefulness of geological survey with GPR in that situation, the technique was tried to investigate depth of bedrock under thick conductive overburden and the other geolocgical informations for the constructionof foundation in the Dongbu apartment site, Kimhae. The reflection patterns on the processed GPR sections are well correlated with the geotechnical units-bedrock, alluvium, landfill unit and their internal layer-boundaries of boring data before GPR survey, except upper contact of bedrock. The isopach maps of the geotechnical units for the 3-D interpretations are made from GPR sections. The maps provided useful geological information that bedrock was distributed as plain and valley with 22~27m depth under alluvium unit (this depth is 5~8 m deeper than drill log) and sedimentary layers subsided and bended along growth fault with NNE strike/15$^{\circ}$SE dip in alluvium unit.

  • PDF

기반암 깊이 도출을 위한 굴절법 탄성파 자료 분석: 사례연구 (Seismic Refraction Analysis to Estimate the Depth to the Bedrock: Case Study)

  • 이두성
    • 지구물리와물리탐사
    • /
    • 제8권4호
    • /
    • pp.237-242
    • /
    • 2005
  • 기반암 심도측정을 위한 탄성파 굴절법 탐사자료 분석 결과 다음과 같은 사실을 확인 하였다. 1) 매질의 탄성파 속도는 표토층(<4 m)에서는 250 m/s, 충적층(4< < 17 m)은 2,500 m/s, 암반은 3,000 m/s 이상이다, 2) 탄성파 탐사에서 표출된 최하부 굴절면의 심도는 최대 17 m 정도로서 이는 3) 속도 및 밀도 검층 자료에서도 동일하게 심도 17 m 부근에서 속도 및 밀도의 증가가 관측된다. 반면 시추조사에 의하면 25 m 이하에서 암반(화강암)이 나타나며 결과적으로 굴절법 탄성파 탐사 및 검층기록과 시추조사 결과에서의 기반암 깊이가 서로 일치하지 않는다. 이러한 원인은 본 조사지역이 충적층의 속도가 상당히 커서 본 탐사기록의 송신원-수진점 거리($70{\sim}80m$)는 심도 25 m의 기반암 굴절파를 초동으로 기록하기 위해서는 충분하지 못한 것으로 분석하였다.

국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정 (Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea)

  • 선창국
    • 지질공학
    • /
    • 제24권2호
    • /
    • pp.273-281
    • /
    • 2014
  • 대부분의 내진설계 기준에서 설계지진지반운동은 기반암에서의 기준 스펙트럼과 지반동적 조건 정량화를 위한 부지증폭계수에 의해 정의된다. 특히, 지진공학적 기반암은 지진파가 증폭 없이 감쇠전파되는 기초적 지반구성층이다. 지진공학 관점에서 기반암을 파악하기 위하여, 원위치 탄성파시험으로 획득한 전단파속도($V_S$) 자료를 시추조사 시 구분되는 암반층에 대해 살펴보았다. 국내 연암에서 대부분의 $V_S$ 자료는 강지진 관측소 설치 시 고려되는 공학적 기반암의 최저 $V_S$ 값인 750 m/s에 비해 크게 나타났으나, 풍화암에서는 전체의 60 % 정도가 작게 나타났다. 따라서 국내 풍화암 하부의 연암 및 그 이상 경도의 암반층을 지진공학적 기반암으로 고려해야 한다.

융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구- (Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations)

  • 김종연
    • 대한지리학회지
    • /
    • 제39권5호
    • /
    • pp.722-734
    • /
    • 2004
  • 기반암 하상 하천의 종단 곡선은 지형 경관 발달의 기본 조건을 형성함으로서 경관 변화에 강력한 영향을 행사한다. 하천 종단 곡선은 기후 환경 조건의 변화, 기반암의 물리 화학적 특성, 지각 운동과 같은 변수들에 의해서 그 형태의 변화를 경험하게 된다. 특히 지각 운동의 시 공간적 양상은 지각 운동이 활발한 혹은 활발했던 것으로 알려진 지역에서 종단곡선에 강력한 영향력을 행사하는 것으로 추론되어 왔다. 그러나, 현재까지의 기반암 하상 하천에 대한 연구는 기반암 하상 하천의 침식 작용을 통제하는 변수들에 대한 이해의 부족으로 답보상태를 면하지 못하여 왔다. 현대 지형학의 주요 연구 기법인 컴퓨터를 이용한 지형 발달 시뮬레이션은 지형 발달의 단계들을 파악하는데 유용한 연구 도구로 환용 되어 왔으나. 기반암 하상 하천의 경우 그 이해의 부족으로 인하여 광범위한 응용이 가능한 모형의 마련에 어려움을 겪어 왔다. 그 결과 기존의 연구들은 단순한 확산 모형을 침식의 기본 모형으로 이용했다. 본 고 에서는 물리적 침식과정에 기반한 기반암 침식 모형들을 검토 수정한 새로운 모형을 소개하고 해당 모형을 이용하여 지각운동의 시 공간적 분포와 강도가 하천 종단 곡선에 미치는 영향을 시뮬레이션을 통해 모사하고 논의하였다.