• Title/Summary/Keyword: Bedrock

Search Result 506, Processing Time 0.026 seconds

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

An approach for deformation modulus mechanism of super-high arch dams

  • Wu, Bangbin;Niu, Jingtai;Su, Huaizhi;Yang, Meng;Wu, Zhongru;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.557-566
    • /
    • 2019
  • The reservoir basin bedrock produced significant impact on the long-term service safety of super-high arch dams. It was important for accurately identifying geomechanical parameters and its evolution process of reservoir basin bedrock. The deformation modulus mechanism research methods of reservoir basin bedrock deformation modulus for super-high arch dams was carried out by finite element numerical calculation of the reservoir basin bedrock deformation and in-situ monitoring data analysis. The deformation modulus inversion principle of reservoir basin bedrock in a wide range was studied. The convergence criteria for determining the calculation range of reservoir basin of super-high arch dams was put forward. The implementation method was proposed for different layers and zones of reservoir basin bedrock. A practical engineering of a super-high arch dam was taken as the example.

Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

Wave Passage Effect on the Seismic Response of a Building considering Bedrock Shear Wave Velocity (기반암의 전단파속도를 고려한 지진파의 통과시차가 건물의 지진거동에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Spatial variations of a seismic wave are mainly wave passage and wave scattering. Wave passage effect is produced by changed characteristics of exciting seismic input motions applied to the bedrock. Modified input motions travel horizontally with time differences determined by apparent shear wave velocity of the bedrock. In this study, wave passage effect on the seismic response of a structure-soil system is investigated by modifying the finite element software of P3DASS (Pseudo 3-Dimensional Dynamic Analysis of a Structure-soil System) to apply inconsistent (time-delayed) seismic input motions along the soft soil-bedrock interface. Study results show that foundation size affected on the seismic response of a structure excited with inconsistent input motions in the lower period range below 0.5 seconds, and seismic responses of a structure were decreased considerably in the lower period range around 0.05 seconds due to the wave passage. Also, shear wave velocity of the bedrock affected on the seismic response of a structure in the lower period range below 0.3 seconds, with significant reduction of the seismic response for smaller shear wave velocity of the bedrock reaching approximately 20% for an apparent shear wave velocity of 1000m/s at a period of 0.05 seconds. Finally, it is concluded that wave passage effect reduces the seismic response of a structure in the lower period range when the bedrock under a soft soil is soft or the bedrock is located very deeply, and wave passage is beneficial for the seismic design of a short period structure like a nuclear container building or a stiff low-rise building.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

Application of GPR Technology for Detecting Bedrock under Conductive Overburden and Geological Survey (전도성 충적지반의 지질 및 하부 기반암 조사를 위한 지하레이다(GPR)의 적용)

  • 윤운상;배성호;김병철;김학수
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.114-122
    • /
    • 1995
  • The principle and applications of GPR(Ground Penetrating Radear) are familiar to engineering geologists and geophsicists as very attractive technique for continuous high resolution images of the subsurface. However, the main limitation of GPR is obviously related to presence of clayey or silty conductive soils, resulting in complete attenuation of radar signals. This difficulty gives hesitation for the exploration of the deeper targets for example detecting bedrock, particularly in Korean situation that most regions have conductive overburden. In order to prove usefulness of geological survey with GPR in that situation, the technique was tried to investigate depth of bedrock under thick conductive overburden and the other geolocgical informations for the constructionof foundation in the Dongbu apartment site, Kimhae. The reflection patterns on the processed GPR sections are well correlated with the geotechnical units-bedrock, alluvium, landfill unit and their internal layer-boundaries of boring data before GPR survey, except upper contact of bedrock. The isopach maps of the geotechnical units for the 3-D interpretations are made from GPR sections. The maps provided useful geological information that bedrock was distributed as plain and valley with 22~27m depth under alluvium unit (this depth is 5~8 m deeper than drill log) and sedimentary layers subsided and bended along growth fault with NNE strike/15$^{\circ}$SE dip in alluvium unit.

  • PDF

Seismic Refraction Analysis to Estimate the Depth to the Bedrock: Case Study (기반암 깊이 도출을 위한 굴절법 탄성파 자료 분석: 사례연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.237-242
    • /
    • 2005
  • A seismic refraction study in estimation of depth to the bedrock demonstrates that 1) the average velocity in the medium is about 250 m/s in the surface layer (< 4 m), 2,500 m/s in the weathered formation, and greater than 3,000 m/s in the bedrock, 2) the depth to the deepest reflector assumed to be the bedrock is about 17 m; however, according to the cores collected in a borehole in study area, the bedrock (granite) occurred at depth 25 m, 3) according to the density and velocity logging, at depth 17 m, a measurable velocity and density increase are observed, and 4) the velocity of the weathered formation is relatively high and therefore, the acquisition offsets ($70{\sim}80m$) are turned out not to be long enough to record the refracted signal from the bedrock at depth 25 m as first arrivals.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.