• Title/Summary/Keyword: Bed Pressure

Search Result 540, Processing Time 0.026 seconds

Biodiesel Production with Zinc Aluminate Catalysts in a High-Pressure-Fixed-Bed-Reactor (Zinc Aluminate 촉매를 이용한 고압연속식 고정층 반응기에서의 바이오디젤 제조)

  • Vu, Khanh Bao;Phan, Thuy Duong Nguyen;Kim, Sunwook;Shin, Eun Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, the effect of reaction conditions on the transesterification of soybean oil and methanol was investigated in a high-pressure-fixed-bed-reactor-system with zinc aluminate catalysts. Without catalysts, high-pressure-reaction at $300^{\circ}C$ and 1,200 psi brought 19% yields of methyl esters, which was caused by the approach of reaction condition to supercritical point of methanol. However, except the specific reaction condition, the yields in the reaction with no catalyst were very low below 4.5%. The zinc aluminate was prepared as catalyst by coprecipitation and characterized with $N_2$ gas adsorption/desorption and X-ray diffraction. With catalyst, the effect of the reaction parameters such as temperature, pressure, and molar ratio of reactants on biodiesel production was demonstrated. The higher temperature, pressure, and methanol molar ratio to soybean oil, the more yields of methyl esters. It was proved that among the reaction parameters, the reaction temperature be the most influential variable on methyl ester yields.

Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향)

  • Ryu, Ho-Jung;Park, Sang-Soo;Moon, Jong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

Effects of Particle Concentrations on Friction Factors and Pressure Drops in a Horizontal Pipe (수평 관에서 고체입자 농도가 압력강하 및 마찰계수에 미치는 효과)

  • Ahn, S.W.;Lee, B.C.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.44-49
    • /
    • 2007
  • Generally, the economic concept of optimized design and operating conditions in fluidized bed heat exchangers can hardly be realized. Because the lack of fundamental knowledge about the particle flows, the optimum design of the fluidized bed heat exchanger is rather limited. In the present work, measurements are made on pressure drops and friction factors in the horizontal circular tube with solid particles in the circulating water. Two different solid particles of diameters of 3mm and 4mm are covered. The Reynolds numbers are ranged from 10,000 to 45,000. It is concluded that the friction factors for the particles of 4mm diameter are much higher than those for the particles of 3mm diameter. And at the lower particle concentration, the friction factors are strongly influenced by the fluid velocity rather than the particle concentration; However, the effect of the particle concentration on friction factors is also significantly higher at a higher particle concentration operating condition.

  • PDF

A Study on the Transient State of Deep Bed Filtration by the Network Model (Network 모델을 이용한 입상여과공정의 전이상태 해석에 대한 연구)

  • Choo, Changupp
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • Collection efficiencies and pressure drops for the removal of small particles from dilute liquid suspensions by granular bed filter were calculated using network model. The network model is composed of a number of nodes connected with cylindrical bond and particles are deposited on the bond surface. The collection efficiency of each cylindrical bond was predicted using unit cell model corresponding to the pore volume of cylindrical pore both at the initial and transient states. Deposited particles on the collector surface may act as additional collector and reduce the pore size of the collector. As a result, the collection efficiency was improved and pressure drop increased with deposition. Even though the stochastic nature of network requires a large number of simulation work, the model proposed in this study can be used in investigating collection efficiency and pressure drop.

  • PDF

An Evaluation of Cooling of Core Debris and Impact on Containment Transient Pressure under Severe Accident Conditions (극심한 사고시 노심 냉각 및 격납용기 과도압력에 미치는 영향)

  • Jong In Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.256-266
    • /
    • 1983
  • An evaluation of containment transient pressure due to the particulate debris/water/concrete interaction under severe accident conditions is presented for a pressurized water reactor with a large dry containment building. A particulate debris/water/concrete model is developed and incorporated into the MARCH computer code. Comparisons with the existing MARCH molten debris/concrete model were performed for the TMLB' and S$_2$D sequences. The results yield a much slower concrete decomposition rate and release less gases into the containment atmosphere. Contrary to the molten debris model, the particulate debris model exhibits a strong interaction with water and causes a higher containment pressure. The effect of gas influx on the debris bed heat transfer was found to be insignificant.

  • PDF

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition (가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조)

  • Seo, Hyung-Jae;Lee, Seung-Chul;Lee, Gang-In;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

Optimization of Fluidized Bed Granulating Conditions for Powdered Milk by Response Surface Methodology (반응표면분석에 의한 분유의 유동층 과립공정 최적화)

  • 강현아;신명곤
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.225-228
    • /
    • 2004
  • Optimization of fluidized bed granulating conditions for yield, bulk density, and tapped density of powdered milk was determined using response surface methodology. Yield of powdered milk was greatly affected by feeding rate of water, and bulk density and tapped density could be reduced by decreasing of atomization pressure. The optimum conditions for fluidized bed granulating of powdered milk were predicted with 6$0^{\circ}C$ of inlet air temperature, 16 mL/min of feeding rate, and 2.1 bar of atomization pressure. Also 94% of yield 0.350 g/㎤ of bulk density, and 0.446 g/㎤ of tapped density of powdered milk could be obtained by the optimum granulating conditions.

A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I) (삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I))

  • Yoo, Haneul;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

Resistance to Airflow of Grain as Affected by Grain Moisture Content (곡물(穀物)의 함수율(含水率) 변화(變化)에 따른 송풍저항(送風抵抗)에 관(關)한 연구(硏究))

  • Kim, M.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 1986
  • The resistance to the passage of airflow through various agricultural products is an important consideration in the design of an aeration or drying system. The amount of resistance to airflow varied widely from one kind of grain to another, and depended upon airflow rate, surface texture and shape of the particles, the size and configuration of voids, and foreign and fine material in the grain bed. The airflow rate was the major factor considered on this kind of study in the early stages. But these days, the studies on the resistance to airflow of grain affected by grain moisture content and foreign and fine material have been widely carried out. However the foreign an fine material in the grain bed could not be a major factor on the study in Korea because there were only a few grain process procedure after harvesting it. The objectives of this study were to investigate the effect of moisture content and airflow rate on airflow resistance to grain, and to develop a model to predict the static pressure drop across the grain bed as a function of moisture content and airflow rate. The rough rice varieties, Akibare, Milyang 15 (Japonica types), Samkwang, Backyang (Indica types)and covered barley variety, Olbori, which were harvested in 1985 were used in the experiment after cleaning them. Resistances to airflow of grain were investigated at four levels of moisture content (13-25%, wb.) for ten different airflow rates($0.01-0.15m^3/sm^2$). The results of this study are summarized as follows; 1. Theaverage bulk densities were $585.3kg/m^3$ for rough rice and $691.6kg/m^3$ for barley at the loose fill, and were $648.8kg/m^3$ for rough rice and $758.2kg/m^3$ for barley at the packed fill. The pressure drops at the packed fill beds were approximately 1.4 to 1.8 times higher than those at the loose fill beds. 2. The pressure drops across grain beds deceased with the increase of moisture content and increased with airflow rate. The decreasing rates of pressure drop across grain beds according to the moisture contents at the lower airflow rates were higher than those at the higher airflow rates, and the increasing rates of pressure drop according to the airflow rates at the lower moisture contents were higher those at higher moisture contents. 3. The pressure drop across barley bed were much higher than rough rice beds and the pressure drops across Japonica type rough rice beds were a little higher than Indica type. 4. The mathematical models to predict the pressure drop across grain beds as a function of moisture content and airflow rate were developed from these experiments.

  • PDF