• Title/Summary/Keyword: Bed Pressure

Search Result 540, Processing Time 0.029 seconds

Remote Care Using Medical Bed System Equipped With Body Pressure Sensors (체압 센서를 이용한 의료용 침대의 원격 케어)

  • Jaehyeok Jeung;Sanghyun Bok;Junhee Lim;Bokyung Oh;Youngdae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.619-625
    • /
    • 2023
  • In this paper, the remote care of medical beds with multiple body pressure sensors is described. Falling is one of the factors that seriously threaten the safety of patients and harm their health. In this study, a new bed was developed to overcome this. The bed system consists of a keyboard that can operate, a keyboard controller that manages the movement of the keyboard, a sensor that measures body pressure, a sensor controller that transmits and receives sensor values, a main controller that checks it and operates automatically or manually according to the algorithm, and a server that oversees all these information. The bed system checks the patient's location through a sensor and wirelessly alerts the server through the main controller when the patient determines that there is a risk of falling, so that the nurse or nurse can recognize the patient's dangerous condition. The server may receive state data transmitted from the wired/wireless terminal to monitor whether the bed system is operating normally. The controller of the keyboard operates a keyboard-type mechanism and automatically controls the prevention of bedsores connected by body pressure sensors to physically separate the area to which the patient's pressure is applied to prevent bedsores. The main controller checks the presence of the patient's bed and transmits it to the server. In conclusion, the proposed system can smart monitor the user's state and perform remote care.

Economic and Performance Analysis for 2bed and 3bed Oxygen PSA Process (2탑 및 3탑식 Oxygen PSA 장치 운전결과 및 경제성 비교분석)

  • Kim, Kweon-Ill;Kim, Jong-Nam;Cho, Sung-Chul;Cho, Soon-Haeng;Jin, Myung-Jong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.653-660
    • /
    • 1996
  • For oxygen PSA process development, adsorbed amount of oxygen and nitrogen on various adsorbents were measured corresponding Langmuir isotherm parameters were measured. A reasonable adsorbent for oxygen process was selected based on the effective adsorbed amount. The PSA process consists of adsorption, desorption, pressurization, purging and pressure equilization steps. Adsorption pressure was about 2 atm and desorption pressure was between 120 torr to 400torr. Cycle time of 2-bed PSA process was 80 seconds and that of 3-bed oxygen PSA process was 180 seconds. In order to compare and analyze operation characteristics and economic feasibilities of 2-bed and 3-bed oxygen PSA processes, productivity, oxygen concentration and recovery were compared and the effect of purge and pressurization steps on the performance of PSA processes were analyzed. For the commercial scale oxygen PSA process, capital and electricity cost were estimated. In the range of $O_2$ production less than $700Nm^3/hr$, the 2-bed process is conformed more feasible in economic view point.

  • PDF

Heat Transfer Characteristics and Pressure Drop of a Fluidized Bed Heat Exchanger without Baffle Plate (배플판이 없는 순환유동층 열교환기의 전열특성 및 압력강하)

  • 전용두;이금배;김엄기;이영림
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.989-995
    • /
    • 2002
  • A new fluidized bed heat exchanger for exhaust gas heat recovery is developed. Compared to the existing ones, the present heat exchanger system is featured by the particle fluidization method which does not depend on conventionally used baffle plate with holes and by the multiple downcomer tubes to extract heat energy from hot particle during the time particles moves down to be fed again to the hot gas line. Particles are introduced to the main hot gas stream alongside the pipe circumference. The heat exchanger performance and pressure drop are evaluated through experiments for the present gas-to-water heat exchanger system.

Heat Transfer Characteristics and Pressure Drop of a Fluidized Bed Heat Exchanger without Baffle Plate

  • Jun, Yong-Du;Lee, Kum-Bae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • A new fluidized bed heat exchanger for exhaust gas heat recovery is do-veloped. Compared to the existing ones, the present heat exchanger system is featured by the particle fluidization method which does not depend on conventionally used baffle plate with holes and by the multiple downcomer tubes to extract heat energy from hot particles during the time particles moves down to be fed again to the hot gas line. Particles are introduced to the main hot gas stream alongside the pipe circumference. The heat exchanger performance and pressure drop are evaluated through experiments for the present gas-to-water heat exchanger system.

A Numerical Study on the Effect of Coefficient of Restitution to Heat Transfer in a Conical Fluidized Bed Combustor (원추형 유동층 연소기 내의 열전달에 미치는 복원계수의 영향에 대한 수치해석 연구)

  • Kang, Seung Mo;Park, Woe-Chul;Abdelmotalib, Hamada;Ko, Dong Kuk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, numerical simulations on conical fluidized bed combustors were carried out to estimate the effect of coefficients of restitution between particle and particle and particle to wall on hydrodynamics and heat transfer. The Eulerian-Eulerian two-fluid model was used to simulate the hydrodynamics and heat transfer in a conical fluidized bed combustor. The solid phase properties were calculated by applying the kinetic theory of granular flow. Simulations results show that increasing the restitution coefficient between the particle and particle results in increasing the bed pressure drop. On other hand, the increasing of particle to wall coefficient of restitution results in decreasing the bed pressure drop. It is found that the coefficient of restitution has little effect on heat transfer.

Process Evaluation for Current Ceramic Filters and Granular Bed Filters for High Temperature High Pressure Applications

  • Chung, Jin-Do
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.138-145
    • /
    • 1996
  • The particulate collection at high temperature and high pressure (HTHP) is important on the advanced coal power generation system not only to improve the thermal efficiency of the system, but also to prevent the gas turbine from erosion and to meet the emission limits of the effluent gas. The specifications for particulate collection in those systems such as Integrated Coal Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) require the absolutely high collection efficiency and reliability. Advanced cyclone, granular bed filter, electrostatic precipitator, and ceramic filter have been developed for particulate collection on the advanced coal power generation system. However, rigid ceramic filters and granular bed filter among them show the best potential. The current technology of these collectors was evaluated in this paper. The experienced problems of these systems on performance, materials, and mechanical design were investigated. Ceramic candle filters has the best potential for IGCC at this moment because it has nearly the highest efficiency comparing with other filtering systems and has accumulated many reliable design data resulted from many field experiences.

  • PDF

Aluminum Coating on A12O3 Powders in Fluidized Bed Reactor at Atmospheric Pressure (유동반응관을 이용한 상압에서의 알루미나 분말의 알루미늄 증착)

  • 강창용
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 1994
  • Aluminum was deposited on aluminum oxide powders using a fluidized bed reactor at atmospheric pressure. The aluminum oxide powders were irregular flakes with acute angles and the average particle size was 26 $\mu\textrm{m}$. The fluidized bed was formed by flowing argon gas at the velocity of 60 cm/sec. The optimal fluidization condition was obtained with the reactor designed to be tapered so that the fluid velocity decreases as the fluidizing gas goes up along the reactor. Aluminum was deposited by flowing TiBA(Triisobutylaluminum) evaporated at$250^{\circ}C$ through the fluidized bed reactor heated to 350~$450^{\circ}C$. The result from the analysis by XRD and EDAX confirmed the coating of aluminum and an SEM micrograph showed the conformality.

  • PDF

Hydrogen Purification by the Four-Bed Pressure Swing Adsorption Process from Steam Methane Reforming Off-Gas (4탑 PSA 공정의 의한 SMR off-gas로부터 수소 정제)

  • Yang, Se-Il;Park, Ju-Yong;Jang, Seong-Cheol;Kim, Sung-Hyun;Choi, Dae-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.383-386
    • /
    • 2008
  • The four-bed PSA process using a layered bed of activated carbon and zeolite 5A was studied to produce a high purity hydrogen product from SMR off-gas. At a desired product purity (99.999%+), the recovery increased with decreasing the linear velocity. However, the difference of the increasing of the recovery became smaller with the decreasing of the linear velocity and then was similar from below the linear velocity 3.9 cm/s. When the adsorbents, the feed gas composition, and the operating conditions are given, the residence time is mainly a function for design of the PSA bed size. The minimum residence time exists to obtain the maximum recovery at desired product purity.

  • PDF

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

Validity of Inter-Particle Models for the Mass-Transfer Kinetics of a Fin-Tube-Type Adsorption Bed (핀-튜브형 흡착탑 해석시 입자간 물질전달 모델의 타당성 검증)

  • Ahn, Sang Hyeok;Hong, Sang Woo;Kwon, Oh Kyung;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.660-667
    • /
    • 2013
  • This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube-type adsorption bed using a two-dimensional numerical model with silica-gel and water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of inter-particle models used to simulate mass-transfer kinetics were examined, such as a constant pressure model and non-constant pressure model, and the valid ranges of the diffusion ratio for each model are proposed. The COP and SCP have been numerically calculated as the performance indexes according to the diffusion ratio. The constant pressure model, which is commonly used in previous research, was found to be valid only in a limited range of diffusion ratio.