• Title/Summary/Keyword: Bearing ratio analysis

Search Result 349, Processing Time 0.023 seconds

Internal force monitoring design of long span bridges based on ultimate bearing capacity ratios of structural components

  • Hu, Ke;Xie, Zheng;Wang, Zuo-Cai;Ren, Wei-Xin;Chen, Lei-Ke
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.93-110
    • /
    • 2018
  • In order to provide a novel strategy for long-span bridge health monitoring system design, this paper proposes a novel ultimate bearing capacity ratios based bridge internal force monitoring design method. The bridge ultimate bearing capacity analysis theories are briefly described. Then, based on the ultimate bearing capacity of the structural component, the component ultimate bearing capacity ratio, the uniformity of ultimate bearing capacity ratio, and the reference of component ultimate bearing capacity ratio are defined. Based on the defined indices, the high bearing components can then be found, and the internal force monitoring system can be designed. Finally, the proposed method is applied to the bridge health monitoring system design of the second highway bridge of Wuhu Yangtze river. Through the ultimate bearing capacity analysis of the bridge in eight load conditions, the high bearing components are found based on the proposed method. The bridge internal force monitoring system is then preliminary designed. The results show that the proposed method can provide quantitative criteria for sensors layout. The monitoring components based on the proposed method are consistent with the actual failure process of the bridge, and can reduce the monitoring of low bearing components. For the second highway bridge of Wuhu Yangtze river, only 59 components are designed to be monitored their internal forces. Therefore, the bridge internal force monitoring system based on the ultimate bearing capacity ratio can decrease the number of monitored components and the cost of the whole monitoring system.

Analysis of Eccentricity Ratio in the Rolling Piston Type Rotary Compressor Using Mobility Method (모빌리티법을 이용한 롤링피스톤형 회전식 압축기의 축심궤적 해석)

  • 강태식;최동훈;이세정
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2001
  • This paper presents an analysis of eccentricity ratio of rolling piston using mobility method which is a powerful tool for analyzing dynamically-loaded journal bearings with efficiency and applicability. And, we investigate influences of design parameters (discharge pressure, radial clearance, rotational velocity of shaft, and eccentricity of compressor) on bearing load and eccentricity ratio. The results show that the discharge pressure, radial clearance and rotational velocity of shaft have significant influence on eccentricity ratio, and the discharge pressure and eccentricity of compressor have influence on bearing load.

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.162-169
    • /
    • 1999
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, groove angle.

  • PDF

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.425-431
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, and groove angle.

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

An Analysis of Load Characteristics of Air-Lubricated Herringbone Groove Journal Bearing By Finite Element Method (공기윤활 빗살무늬 저널베어링의 부하특성에 대한 유한요소해석)

  • 박신욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.353-362
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. In this study, static and dynamic compressible isothermal lubrication problems are analyzed by the finite element method together with the Newton-Raphson iterative procedure. This analysis is introduced for prediction of the static and dynamic characteristics of air lubricated HGJB for various bearing configurations. The bearing load characteristics and dynamic characteristics are dependent on geometric parameters such as asymmetric ratio, groove depth ratio, groove width ratio and groove angle.

  • PDF

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • A numerical analysis is undertaken to show the influence of bearing design parameters on the load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, and the seal ratio.

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

An Analysis of the Stability of Externally Pressurized Air-Lubricated Journal Bearings (외부가압 공기윤활 저어널베어링의 안정성에 관한 해석)

  • 임종락;김경웅;김금모
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.74-81
    • /
    • 1990
  • The threshold of instability for a rigid rotor supported in externally pressurized airlubricated circular or non-circular journal bearings of finite length is theoretically analyzed. The analysis is performed for a bearing having one feeding plane, no recess volume, which is assumed to be a line source, and is based on a first order perturbation of journal center motion about steady state position. And then linearized system dynamic analysis is carried out. Numerical results are given, showing the threshold of instability as a function of supply pressure ratio, feeding parameter and load. It is shown that the region that 2-lobe bearing is more stable than circular bearing exists and whirl ratio of 2-lobe bearing is less than that of the other types of bearing.