• Title/Summary/Keyword: Bearing preload

Search Result 109, Processing Time 0.025 seconds

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun Cheon;Choi, Seong Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

직접해법에 의한 공기 윤활 틸팅 패드 저어널 베어링의 윤활 해석에 관한 연구

  • 김인식;황명
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.121-126
    • /
    • 1993
  • Tiling pad journal bearing that has high stability is analyzed about air-lubricated bearing that is usually used to need high precision by using the Direct analysis. The pressure that supports the shaft is occured by the differences between the shaft and pads radii of curvatures. So the characteristics of load capacity for their variable values is important. In this paper the load capacity is compared with some the eccentricity ratio values of0.1, 0.2, 0.5, 0.8. The large load capacity comes from large eccentricity ratio, highbearing number and high preload. But if the preload become high too much, then the shaft makes contact with pads.

Dynamic analysis and experiment for shaft systems supported by angular contact ball bearings (각 접촉 볼 베어링으로 지지된 회전 축 계의 동적 해석 및 실험)

  • 강규웅;강중옥;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.247-250
    • /
    • 2000
  • This paper presents the dynamic analysis and experiment for a shaft system supported by angular contact ball bearings. Among others, the dynamic characteristics of bearings are significantly affected by axial preload and radial load applied. This paper rigorously analyzes the dynamic characteristics of a shaft system with angular contact ball bearings subject of axial preload so as to result in eigenvalues as well as bearing stiffness characteristics. Experiments are also performed to identify natural frequencies and stiffness characteristics of bearings implemented. Comparison is made on the theoretical and experimental results.

  • PDF

The Characteristics and Estimated Stiffness of Rubber Pads for Railway Bridges (철도교량용 고무패드의 특성 및 강성 추정기법)

  • Choi Eunsoo;Kim Hyun Min;Oh Ji Taek;Kim Sungil
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.115-122
    • /
    • 2005
  • This study analyzed the characteristics of four kinds of bridge rubber pads and suggested how to determine the stiffness the pads. The stiffness of rubber pads can be estimated by a direct static test. In the procedure to estimate the stiffness of a pad, the dead load(preload) of a bridge and live load of a vehicle are considered. The polyurethane rubber pads have larger hardness than natural and chloroprene rubber pads and thus carry larger load bearing capacity. In addition, they showed higher stiffness with the same shape factor than the others and thus are more avaliable as for bridge bearings. Although natural and chloroprene rubber pads are elongated to large deformation in horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless to the thickness and hardness of the pads. Therefore, they do not need reinforced plate to restrict horizontal deformation.

  • PDF

Heat Generation Model of Angular Contact Ball Bearing with Oil-Air Lubrication

  • Na, Hee-Hyeong;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2000
  • Angular contact ball bearings are mainly used in the spindle, which requires high speed and stiffness. The heat generation is studied by experiments and simulations using a pair of angular contact ball bearings. The temperature variation of inner and outer races and the temperature increment distribution are measured by using thermocouples for the rotational speed, preload, viscosity of lubricant. The measured values from experiments are used to estimate the heat conduction rate. The method of oil-air lubrication is used for the experiment. The amount of conduction heat transfer to the test spindle and the convection heat transfer coefficients long the spindle are computed by using inverse method with temperature increment distribution. Total heat generation rate is estimated with the heat partition rate which is calculated from temperatures of inner and outer races. In addition, the empirical factor of oil-air lubrication method for Palmgren's heat generation model is suggested. The empirical friction coefficients, which are obtained from the experiments, depend on the preload condition, and can give us more accurate estimation of the heat generation in ball bearings.

  • PDF

Performance Analysis of Gas Lubricated Flexure-Pivot Tilting Pad Journal Bearings

  • Kim, Jong-Soo;F. Zeidan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.224-230
    • /
    • 2001
  • A numerical analysis for the gas lubricated flexure-pivot tilting pad journal bearing has been accomplished. The film pressure are obtained by Newton-Raphson method and the dynamic coefficients are evaluated by the pad assembly method. The effects of the pivot position of the pad on the static and dynamic characteristics are presented for three pads journal bearing with LBP. The optimum pivot positions for the static performance is different from that of the dynamic performance.

  • PDF

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

A Study on the determination of the initial torque in tightening set screw of the drum assembly in VCR (VCR Drum 조립체의 고정나사 체결 Torque 결정에 관한 연구)

  • Son, Young-Gap;Kim, Jae-Jung;Back, Seung-Jun;Chang, Seog-Weon;Ryu, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.333-338
    • /
    • 2000
  • This paper presents an experimental study and numerical thermal deformation analysis in the home appliance, Video Cassette Recorder. Analyzing the change axial force of a set screw according to the change of temperature in the drum assembly, we can determine the initial torque in tightening set screw. The torque will have the preload boss not be separated from the bearing. Also we conduct the fundamental experiment to constitute a boundary condition of the numerical analysis. With the result of this study, we can change the material of preload boss, copper, for aluminum.

  • PDF

A study on the Effects of the Bearing Parameters on the Main Spindle Design of Machine Tool (공작기계 주축설계에 영향을 미치는 베어링 파라미터에 관한 연구)

  • Yeo, Eun Gu;Kim, Yeop Rae;Han, Gang Geun;Park, Myeon Ung;Yu, Heon Il;Lee, Yong Sin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.119-119
    • /
    • 1998
  • The purpose of this study is to investigate the effects of operation factors of a typical main spindle system on the efficiency of machine tool. In this study. both static and dynamic analysis of typical main spindle system of the machine tool are performed using a finite element method. These finite element results are then used to predict the bearing stiffness. the amount of heat generation as well as the bearing life in the spindle system. Effects of material type of ball-bearing. bearing-lubricant type and main spindle bearing preload are examined.

A Study on the Optimum Shrink-fit for High Speed Ball Bearing of Machine Tool (공작기계용 고속 볼베어링의 최적 끼워맞춤에 관한 연구)

  • Kim, Woong;Lee, Choon-Man;Hwang, Young-Kug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.94-102
    • /
    • 2010
  • The spindle is the main component in machine tools. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Bearing is very important part in spindle. The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of shrink fits. The aims of this study are to grasp the shrink fits and behavior of a bearing which is a deeply connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). This paper proposed optimum value of shrink fit considering deformation of spindle and stress of fitting area using design of experiments. Thus, the proposed formula can be used to obtain bearing internal clearance.