• Title/Summary/Keyword: Bearing plate

Search Result 438, Processing Time 0.022 seconds

Application of in-situ testing Methods for Bearing Capacity Estimation of Railroad Roadbed (철도 노반의 지지력 평가를 위한 현장 시험법 적용성 연구)

  • Park, Chang-Woo;Choi, Chan-Yong;Lee, Il-Wha;Kim, Dae-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.866-875
    • /
    • 2006
  • The field plate load test a good potential for determining modulus since it measures both plate pressure and settlement. However, because The field plate load test is expensive and takes plenty of time for operation, it is very difficult to figure out the test characteristics of railroad roadbed in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) and the Light Falling Weight Deflectometer(LFWD) have been utilized for estimating the bearing capacity of railroad roadbed. The objective of this study is to determine the relationship between the test(PLT, DCP, LFWD) of the railroad roadbed in Korea. The DCP test and LFWD test for evauluating the strength of railroad roadbed materials produced in Korea are presented in this paper.

  • PDF

A Behavior of Rolling Contact Fatigue on Retained Austenite in High-Carbon Chromium Bearing Steel (고탄소 크롬 베어링 강에서의 잔류 오스테나이트 변화에 따른 회전접촉 피로거동)

  • Jin, Jai Koan;Kim, Dong Keon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.190-198
    • /
    • 1994
  • In order to study the effect of retained austenite on rolling contact fatigue in high-carbon chromium bearing steel, retained austenite was controlled by only tempering temperature, individually 200, 220 and $240^{\circ}C$. Among various microstructural alteration during rolling contact fatigue test, plate-like carbide most related to the flaking at sub-surface of contact pressure. The plate-like carbides formed during rolling contact fatigue test decrease with increasing tempering temperature, and fatigue life is much more improved. The retained austenite was decreased with the tempering temperature, and that decreased plate-like carbide formation. Therefore fatigue life is much more improved with decreasing retained austenite.

  • PDF

Evaluate of bearing capacity by dynamic load in base (동하중에 의한 노상의 지지력 평가)

  • 김종렬;박달수;박정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.279-286
    • /
    • 2002
  • Present all sorts of failure or no failure test methods are done for evaluate structural ability of pavement. It are Plane Plate Test, CBR Test, Benkelman Beam Test, FWD, Dynaflect, etc. but, each method of test not expect compatibility because the result very different by each method of test. Now among pavement's method of evaluation, no failure test gradually use because It quickly and simply obtain pavement's elastic modulus of each layer. But, It accompany expensiveness equipment, and It's degree of trust is lower against expensiveness equipment. Therefore this research practice comparative trustworthy Plane Plate Test, comparative low cost and quick Small FWD Test. And analyzed relation of Plane Plate Test with Small FWD Test.

  • PDF

Evaluation of Bearing Strength for Composite Joint (합성접합부에서 지압내력 평가식)

  • 김병국;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope one of details to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. Local bearing tests with specimens about 1/3 of the actual concrete column size were performed applying uniform load through steel plate with 100$\times$110mm size. Test results show that specimens with the bearing reinforcement detail developed in this study enhanced the bearing strength by 1.71~3.02 compared to concrete cylinder strength.

  • PDF

Seam Efficiency of Geotextile and Verification of Allowable Bearing Capacity of Soft Ground (토목섬유 봉합효율과 연약지반 허용지지력 현장검증)

  • Cho, Dae-Sung;Chae, Yu-Mi;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.25-34
    • /
    • 2021
  • Since the dredging reclaimed land consisting of soft ground is very weak in support, the difficult and complex factors should be considered in the design to calculate accurate bearing capacity of soft ground. Recently, various reinforcement construction methods of soft ground have been designed for dredged landfills, but the stabilities are predicted by calculating conventional Meyerhof (1974) equation for trafficability in soft ground. Conventional equations increase economic costs by underestimating bearing capacity of weak ground in order to ensure constructive safety, so a modified equation has been proposed from the literature. The paper attempts to experiment and compute important factors, such as stitching fiber and seam tensile strength of geotextiles, that are not theoretically considered and can be identified in the field. In addition, The evaluation of the bearing capacity of the modified equation is verified to be stable for trafficability through the plate bearing test performed on site.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Experimental and theoretical research on mechanical behavior of innovative composite beams

  • Zhu, Gang;Yang, Yong;Xue, Jianyang;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.313-333
    • /
    • 2013
  • The web-encased steel-concrete composite (WESCC) beam is a new developed steel-concrete composite beam. Experiments of six simply supported WESCC beam specimens were conducted. The effects of the shear-span ratio and steel section type were all investigated on the static behaviors such as failure modes, failure mechanism and bearing capacity. The experimental results denoted that all specimens failed in bending mode and the degree of combination between the bottom armor plate of steel shape and concrete were very well without any evident slippage, which demonstrated that the function of bottom armor plate and web were fully exerted in the WESCC beams. It could be concluded the WESCC beams have high stiffness, high load carrying capacity and advanced ductility. The design methods are proposed which mainly consist the bearing capacity calculation of bending and flexural rigidity. The calculation results of the bearing capacity and deflection which take the shear deflection into account are in agreement with the experimental results. The design methods are useful for design and application of the innovative composite beams.

Study on the Behavior of Toe of Drilled Shaft on the Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 연구)

  • Park, Woan-Suh;Jeon, Suk-Won;Han, Yong-Hee;Choi, Se-Kun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.842-847
    • /
    • 2008
  • Despite of the increasing number of the application of the drilled shaft pile in construction site, most of the study of pile capacity has been centered side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use the bearing resistance, so prediction of the toe's movement and characteristic of the bearing capacity is important as the side shear resistance. Therefore the model tests were performed in order to study the characteristic of bearing capacity on rock mass. The material of the test blocks were the mortar which was mixed with sand, cement and water, and test block size was $240{\times}240{\times}240mm$. Load was pressed by the 45mm of diameter of miniaturized pile and plate jack and steal plate were used to the confined stress for representing the underground condition. The relation of load-displacement was measured in many different conditions of rock mass such as direction of discontinuities, spacing and strength, and q-w curves of the toe of the pile were verified in each condition.

  • PDF

A Study on Evaluation of Sidewalk / Roadway Pavement Using Stone Block (스톤 블럭을 이용한 보.차도 포장의 적용성 평가)

  • Yoon, Won-Sub;Kim, Jong-Kook;Park, Sang-Jun;Cho, Chul-Hyun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.259-266
    • /
    • 2008
  • Recently, the maintenance period of sidewalk pavement proposed in Ministry of Construction & Transportation to be extended by more than 10 years. Therefore it takes many interests in Durability and the maintenance. Beside sidewalk pavement, block pavement happened problems in parking and road less than 20km/hr about bearing capacity and durability, the maintenance. It interests about importance of environmentally friendly sidewalk pavement. It compared engineering characteristics about strength and durability through general pavement comparison with stone block pavement. It estimate bearing capacity in actual si-tu site and test site. It experimented plate bearing test and field density test. It verified about durability of pavement by construction availability of geosynthetics that is constructed by purpose of filter. Stone block pavement evaluated about application of sidewalk/road pavement on the basis of result.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.