• 제목/요약/키워드: Bearing pile

검색결과 600건 처리시간 0.027초

말뚝캡이 선단지지 무리말뚝의 지지거동에 미치는 영향 (Influence of Pile Cap On The Behaviors of End Bearing Pile Groups)

  • 최영석;이수형;정충기;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.245-252
    • /
    • 2000
  • Model tests on free standing pile groups and piled footings with varying a pile spacing in two layered soils are carried out. The influence of pile cap on the behaviors of end bearing pile groups is analyzed by comparing the bearing behavior in piled footings with those in a single pile, a shallow footing(cap alone) and free standing pile groups. From the test results, it is found that the bearing characteristics of cap-soil-pile system are related with load levels and pile spacings. Before yield, the bearing resistance by cap is not fully mobilized, however, as the applied load increases, the bearing resistance of cap approaches to that of cap alone and settlement hardening occurs after yield due to the compaction caused by the contact pressure between cap and soil. By the cap-soil-pile interaction, shaft friction and point resistance of piles considerably increase with dependency of pile spacings. In two layered soil, the increasing effect of dilatancy in dense sandy soil adjacent to pile tips, increases the point resistance of pile.

  • PDF

산정방법에 따른 단말뚝의 지지력 비교연구 (A Comparative Study on Bearing Capacity of Single Pile Based on Calculation Method)

  • 이영대;심재현
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.124-133
    • /
    • 1997
  • Pile load test is good for estimating pile bearing capacity, but using this method is limited by time and cost required. Dynamic and static method is more convenient and economical, but confidence of estimated value by dynamic and static method are lower than that of pile load test. After being compared pile bearing capacity data obtained from pile load test with those of other two methods, the results from this study were summarised as follows. For allowable bearing capacity values greater than 175t per pile, bearing capacity acquired from static method was higher than that acquired from pile load test, whereas bearing capacity acquired from pile load test was higher than that acquired from static method for values under 175 per pile. It was that variance of bearing capacity was large when bearing capacity obtained by dynamic method was higher than 250t. Also bearing capacity based on dynamic method was higher than that based on pile load test. Allowable bearing capacity get from dynamic method suggested that carefull precautions are necessary in application for allowable bearing capacity values higher than 2S0ton per pile.

  • PDF

Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations

  • Zhang, Xuefeng;Li, Qingning;Ma, Ye;Zhang, Xiaojiang;Yang, Shizhao
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.201-212
    • /
    • 2014
  • Due to the sea-crossing bridge span is generally large and main pier pile foundations are located in deep water and carry large vertical load, sea-crossing bridge main pier pile foundations bearing mechanism and load deformation characteristics are still vague. Authors studied the vertical bearing properties of sea-crossing bridge main pier pile foundations through pilot load tests. Large tonnage load test of Qingdao Bay Bridge main pier pile program is designed by using per-stressed technique to optimize the design of anchor pile reaction beam system. Test results show that the design is feasible and effective. This method can directly test bearing capacity of main pier pile foundations, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test study the vertical bearing properties of main pier pile foundation and compared with the generally short pile, author summarized the main pier pile foundations vertical bearing capacity and the main problem of design and construction which need to pay attention, and provide a reliable basis and experience for sea-crossing bridge main pier pile foundations design and construction.

무리말뚝을 구성하는 개별말뚝의 선단지지력에 대한 실험연구 (Experimental Study on the End Bearing Capacity of the Pile in a Group Pile)

  • 나용수;이상덕
    • 한국지반공학회논문집
    • /
    • 제35권6호
    • /
    • pp.27-38
    • /
    • 2019
  • 균질한 지반에서 말뚝의 지지력은 선단지지력과 주변마찰력의 합이며, 사질지반에서는 주변마찰력이 선단지지력보다 우세한 것으로 알려져 있다. 다수의 말뚝을 근접하여 설치하는 무리말뚝에서는 말뚝 하나하나의 지지력이 말뚝 상호간 간섭에 의해 달라질 수 있으므로, 말뚝의 근접도에 따라서 선단지지거동과 주변마찰거동의 변화를 정확하게 파악하여 말뚝을 설계해야 한다. 따라서 본 연구에서는 주면마찰거동의 영향을 배제한 상태에서 무리말뚝의 선단지지거동을 측정하기 위해 크기가 일정한 원형 토조에서 여러 가지 직경과 깊이로 말뚝을 설치하고 상대밀도가 균일한 모래지반을 조성한 후 선단지지력을 측정하여 무리말뚝의 근접도에 따른 영향을 확인하였다. 연구결과 말뚝의 선단저항력은 비교적 뚜렷하게 극한값을 나타냈다. 말뚝의 극한선단지지력은 주면마찰력과 말뚝의 직경에 의한 영향을 적게 받으며, 말뚝관입길이가 깊어질수록 일정한 값에 수렴하였다. 또한, 무리말뚝에서 인접한 말뚝이 말뚝 직경만큼 서로 이격되어 있으면 인접말뚝의 영향이 거의 없었다.

Settlement analysis of pile cap with normal and under-reamed piles

  • Kumar, Madisetti Pavan;Raju, P. Markandeya;Jasmine, G. Vincent;Aditya, Mantini
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.525-535
    • /
    • 2020
  • The use of pile foundations has become more popular in recent years, as the combined action of the pile cap and the piles can increase the bearing capacity, reduce settlement, and the piles can be arranged so as to reduce differential deflection in the pile cap. Piles are relatively long, slender members that transmit foundation loads through soil strata of low bearing capacity to deeper soil or rock strata having a high bearing capacity. In this study analysis of pile cap with considering different parameters like depth of the pile cap, width and breadth of the pile cap, type of piles and different types of soil which affect the behaviour of pile cap foundation is carried out by using Finite Element Software ANSYS. For understanding the settlement behaviour of pile cap foundation, parametric studies have been carried out in four types of clay by varying pile cap dimensions with two types of piles namely normal and under-reamed piles for different group of piles. Furthermore, the analysis results of settlement and stress values for the pile cap with normal and under-reamed piles are compared. From the study it can be concluded that settlement values of pile cap with under-reamed pile are less than the settlements of pile cap with normal pile. It means that the ultimate load bearing capacity of pile cap with under-reamed piles are greater than the pile cap with normal piles.

동재하시험에 의한 모래자갈층에 근입된 매입말뚝의 지지력 산정 (The Estimation of Bearing Capacity of Auger-drilled Pile in Sand-Gravel by Dynamic Load Test)

  • 최기철;문유호;오원근;천병식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1819-1826
    • /
    • 2007
  • This study results of performed field load test in order to estimate the best pile length assessment and allowable bearing capacity of the pile foundation. End of initial driving(EOID) and restrike of pile dynamic loading tests were performed to calculate allowable bearing capacity of the experimental pile side and results were compared with the allowable bearing capacity estimated by theory. The results of allowable bearing capacity by EOID test is $1.08{\sim}1.21$ in the range of compared to the capacity calculated by the Structure Foundation Design Criterion. Allowable bearing Capacity by restrike of pile dynamic loading test is $1.32{\sim}1.48$ in the range of compared to the Structure Foundation Design Criterion. The Foundation Design Criterion underestimated the pile capacity. If the bearing capacity calculated by Structure Foundation Design Criterion is 100, EOID of pile dynamic loading test is 116, restrike of pile dynamic loading test is 138 for 20m pile used in this experimental.

  • PDF

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법 (Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method)

  • 한중근;이재호
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.

폐기물 매립지반에서 PG Pile의 지반지지력 특성 (A Characteristics of Bearing Capacity by PG Pile on Waste Landfill)

  • 천병식;최춘식
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.213-218
    • /
    • 2000
  • Waste landfill is so loose that it may cause the insufficient bearing capacity and the differential settlement. And so, characteristics and conditions of the ground should be considered in applications of ground improvement in waste landfill. In this paper, analysis of field tests as the static loading test and the bearing capacity test were performed. In result, PG(Pack Grouting) pile method is proved effective and economic, because it could bring about the increase of end bearing capacity, the prevention of differential settlement and increase of density by expansion of pile.

  • PDF

실트지반에 타입된 말뚝의 지지력 증가효과 (The Effect of Bearing Capacity Increasement for Driven Pile in Silt)

  • 여병철;오세욱;배우석;안병철
    • 한국지반환경공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.19-26
    • /
    • 2003
  • 최근 연약지반상의 말뚝기초설계에 있어서 경시효과는 말뚝의 지지력 특성을 나타내는 중요한 요소 중의 하나로 인식되고 있다. 본 논문에서는 이러한 지지력 증가효과를 연구하기 위해 두 곳의 현장에서 13개의 말뚝에 대해, 항타시 EOID(초기 동재하시험)을 실시한 후 일정한 시간이 경과한 다음 재항타시험을 수행하였다. 느슨한 실트지반에 H말뚝, 강관말뚝, PHC말뚝을 항타에 의해 설치하고 9일 후 재항타 한 결과 H말뚝, 강관말뚝의 경우 지지력이 증가된 반면, PHC말뚝은 지지력의 증가가 거의 없는 것으로 나타났다. 7일 후 재항타시험을 수행한 결과 단단한 실트지반의 경우 H말뚝과 강관말뚝은 지지력이 1.17배 증가하였다. 그러나 PHC말뚝의 경우 6일 후 수행한 제 1차 재항타시험에서는 지지력이 감소하였다가, 13일 후 수행한 3차 재항타시험에서는 지지력이 1.38배 정도 증가하는 것으로 나타났다.

  • PDF