• Title/Summary/Keyword: Bearing factor

Search Result 502, Processing Time 0.025 seconds

Compression of hollow-circular fiber-reinforced rubber bearings

  • Pinarbasi, Seval;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.361-384
    • /
    • 2011
  • Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the bearing but also increases the maximum shear strain developing in the bearing due to compression, both of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The problem is handled using the most-recent formulation of the "pressure method". The analytical solutions are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing's compression modulus and maximum shear strain in the bearing in view of four key parameters: (i) reinforcement extensibility, (ii) hole size, (iii) bearing's shape factor and (iv) rubber compressibility. It is shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the bearing is high and rubber compressibility is not negligible. Numerical studies also show that the existence of even a very small hole can increase the maximum shear strain in the bearing significantly, which has to be considered in the design of such annular bearings.

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar;Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-138
    • /
    • 2022
  • Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle (모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2014
  • Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

Tensile Behavior of Pin-Loaded Carbon/Epoxy Composite Laminates (핀하중을 받는 탄소섬유/에폭시 복합적층판의 인장거동)

  • 박동창;황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2518-2534
    • /
    • 1993
  • Fracture behavior of carbon/epoxy laminates under pin loading is studied experimentally and analytically. Effects of ratios of specimen width to hole diameter and edge distance to hole diameter on bearing strength are investigated. Characteristic length of the laminates obtained using HK model has good agreement with the experimental data. The larger hole size induced, the lower bearing strength is measured under pin loading . The bearing strength and failure mode could be predicted using HK model and Zhangs analytical solution of stress distribution around a pin loaded hole. Chamis' prediction method of bearing strength is also considered to predict failure mode and bearing strength. A modification of Chamis' method is made using the factor of rupturc. The predicted bearing strength by the modified method is reasonably close to the experimental data.

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Bearing capacity at the pile tip embedded in rock depending on the shape factor and the flow

  • Ana S. Alencar;Ruben A. Galindo;Miguel A. Millan
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.443-455
    • /
    • 2023
  • This is a research analyses on the bearing capacity at a pile tip embedded in rock. The aim is to propose a shape coefficient for an analytical solution and to investigate the influence of the plastic flow law on the problem. For this purpose, the finite difference method is used to analyze the bearing capacity of various types and states of rock masses, assuming the Hoek & Brown failure criterion, by considering both plane strain and an axisymmetric model. Different geometrical configurations were adopted for this analysis. First, the axisymmetric numerical results were compared with those obtained from the plane strain analytical solution. Then the pile shape influence on the bearing capacity was studied. A shape factor is now proposed. Furthermore, an evaluation was done on the influence of the plastic flow law on the pile tip bearing capacity. Associative flow and non-associative flow with null dilatancy were considered, resulting in a proposed correlation. A total of 324 cases were simulated, performing a sensitivity analysis on the results and using the graphic output of vertical displacement and maximum principal stress to understand how the failure mechanism occurs in the numerical model.

Lubrication Analysis of Dynamically-Loaded Crosshead Bearing for Marine Engine (동하중을 받는 박용엔진 크로스헤드 베어링의 윤활해석)

  • 김정훈;김창희;이성우;이득우
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.46-51
    • /
    • 1997
  • Crosshead bearings in two-stroke marine diesel engines are operated under severe conditions of lubrication because the load on the bearing is unidirectional and the sliding speed is very low and oscillatory. In this paper, the motion of journal in a bearing is investigated using the lubrication theory. Several locus paths are presented to show the effects of oil groove size, bearing clearance and oil inlet pressure. It is found that the minimum film thickness is affected by the oil groove and bearing clearance, and the oil groove is an important design factor.