• Title/Summary/Keyword: Bearing Stiffness

Search Result 922, Processing Time 0.023 seconds

Effects of Asymmetry of Bearing Damper Stiffness on the Stability of Rotors (베어링 지지댐퍼 강성의 비대칭이 회전체 동특성에 미치는 영향)

  • 제양규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.100-106
    • /
    • 2003
  • In order to improve the instability of a plane journal bearing, the leaf spring dampers (LSD) are introduced. The effects of LSD on the stability of a plane journal bearing are investigated theoretically. The stability of a plane journal bearing with LSD are compared with the results of a plane journal bearing without LSD. And the effects of the asymmetry of the stiffness of the leaf spring damper on the stability of rotors are also investigated.

  • PDF

Basic Characteristics of a Self-Compensated Hydrostatic Journal Bearing (자기보상형 유정압저어널베어링의 기본특성)

  • 박천홍;이영준;홍성욱;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.227-230
    • /
    • 2004
  • A self-compensated water-hydrostatic bearing has advantages in bearing stiffness. In this paper, the mechanism is applied to hydrostatic journal bearing for achieving the high bearing stiffness. The finite element method is applied to analyze the load characteristics of the self-compensated journal bearing. From the analyzed results, it is confirmed that though the self-compensated journal bearing has higher load capacity and stiffness than conventional fixed capillary journal bearing, the merit is decreased in the case of high eccentricity, that is, a spindle system with self-compensated journal bearing must be designed to have the load capacity large enough. For improving the practicality, a rectangular type capillary is introduced and discussed. Theoretically analyzed results show that it has more advantages than the conventional annular type capillary in the practical usage. The experimental verification on the analysis method is performed, and the experimental results show good agreement with theoretical results.

  • PDF

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Sung-Chul;Lee, Yong-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1135-1141
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performance, stiffness, damping coefficient and load capacity, depends on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

  • PDF

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

A Study on the Active Control of Air Bearing (공기베어링의 능동제어에 관한 연구)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.

An Optimal Design of a Vertical Guide Bearing for Vibration Reduction (축계 진동 저감을 위한 수직형 안내 베어링의 최적 설계)

  • Ha, Hyun-Cheon;Park, Chul-Hyun;Kim, Hyung-Ja
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.64-72
    • /
    • 2001
  • This paper describes an optimal design technology in a segment type vertical guide bearing for vertical rotating machinery. Segment type vertical guide bearings have widely used for vertical rotating machinery, however bearing problems, such as excessive vibration and temperature rise, frequently take place in the actual machine. Such excessive vibration magnitude and/or abnormal bearing metal temperature rise result in serious damage and economic losses. Thus the segment type vertical guide bearing should be designed to get optimal characteristics in order to maintain stable operation without bearing failure due to abnormal vibration and/or abnormal bearing metal temperature. The preload ratio is the most important parameter in designing the segment type vertical guide bearing. Because adjustment of the bearing preload by changing the bearing clearance could easily control both the bearing stiffness and the cooling effect. In the paper, the influence of the preload effects on the bearing metal temperature and the bearing stiffness has been investigated both theoretically and experimentally in order to find out an optimum preload ratio. Results show that the segment type vertical guide bearing has an optimum preload ratio at which the bearing stiffness reaches a masimum value while the bearing metal temperature is minimized.

  • PDF

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Dynamic Analysis of Spindle Supported by Multiple Bearings of Different Types (복합베어링으로 지지된 스핀들의 동적 해석)

  • Tong, Van-Canh;Bae, Gyu-Hyun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • This paper presents a dynamic modeling method for the indeterminate spindle-bearing system supported by multiple bearings of different types. A spindle-bearing system supported by ball and cylindrical roller bearings is considered. The de Mul's bearing model is extended for calculating ball and cylindrical roller bearing stiffness matrices with inclusion of centrifugal force and gyroscopic moment. The dependence between spindle shaft reaction forces and bearing stiffness is effectively resolved using an iterative approach. The spindle rotor dynamics is established with the Timoshenko beam theory based finite elements. The spindle reaction forces, bearings stiffness and spindle natural frequencies are obtained with taking into account spindle radial load, ball bearing axial preload and rotational speed effects. The developed method is verified by comparing the simulation results with those from a commercial program.

A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor (원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구)

  • Park, Sang-Shin;Kim, Gyu-Ha
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.