• Title/Summary/Keyword: Bearing Pressure

Search Result 878, Processing Time 0.022 seconds

Numerical Analysis on the Oil Film Behavior of Engine Main Bearing Considering Dilution of Diesel Fuel (경유 혼입을 고려한 엔진 메인 베어링의 유막거동에 관한 수치적 연구)

  • Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This paper describes the influence on engine main bearing behavior of the oil film when the fuel is diluted on a diesel engine equipped with DPF system. Oil film pressure and the thickness is calculated in accordance to the fuel dilution. The calculation is based on the numerical analysis of the engine main bearing. As a result, the engine oil viscosity decreased as the fuel dilution increased. This led the increment of the maximum oil thickness pressure. Verification of the minimum oil film thickness settlement by the engine gas pressure and the fuel dilution was confirmed. Destruction possibility of the engine main bearing was foreseen when the engine speed was 2000 rpm with the fuel dilution 15% and the 5W40 engine oil.

Lubrication Effect of Journal Bearing according to its Eccentricity and Attitude Angle (베어링 편심도와 자세각에 따른 저어널 베어링의 윤활효과)

  • Kim, Jong-Do;Wang, Yi-Jun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.88-95
    • /
    • 2015
  • The thickness of adsorbed molecular layers is the most critical factor in studying thin-film lubrication, and it is the most essential parameter that distinguishes thin-film from thick-film lubrication analysis. The thin film between the shaft and bearing surface within a very narrow gap was considered. The general Reynolds equation has been derived for calculating thin-film lubrication parameters affecting the performance of the circular journal bearing. Investigation of the load-carrying capacity and pressure distribution for the journal bearing considering the adsorbed layer thickness has been carried out. A Reynolds equation appropriate for the journal bearing is used in this paper for the analysis, and it is discussed using the finite difference method of the central difference scheme. The parameters, such as eccentricity and attitude angle, are used for discussing the load-carrying capacity of the journal bearing. The results reported in this paper should be applied to analysis of the journal bearing with different lubrication factors. The steady-state analysis of the journal bearing is conducted using the Reynolds model under thin-film lubrication conditions. For a journal bearing, several parameters, such as a pressure, load capacity, and pressure components of the bearing can be obtained, and these results can be stored in a sequential data file for later analysis. Finally, their distribution can be displayed and analyzed easily by using the MATLAB GUI technique. The load-carrying capability of the journal bearing is observed for the specified operating conditions. This work could be helpful for the understanding and research of the mechanism of thin-film lubrication.

A Study on the Design of H-Section Steel Column Baseplate under Concentric Loadings (중심 축하중을 받는 H형강 기둥 베이스플레이트의 설계에 대한 연구)

  • Lee, Seung Joon;Lee, Jae Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.717-726
    • /
    • 2005
  • This study investigates the bearing pressure distribution and design of an H-section steel column baseplate under concentric loading. In general, the size and thickness of the baseplate are determined with the assumption that the bearing pressure of the column baseplate is distributed uniformly. When the column is loaded lightly, however, the baseplate becomes smaller andthinner and the bearing pressure of the baseplate is distributed non-uniformly. In this study, the distribution of the bearing pressure is investigated using the experimental method and the analytical method. Seven specimens of the H-section steel column baseplate were fabricated and tested. The analysis of the specimens was performed using the finite element analysis program, ANSYS. It is not appropriate to use the Limit State Design,which assumes that the bearing pressure of the baseplate is distributed uniformly,because the bearing pressure is distributed non-uniformly and is concentrated under the column sectio.

Bearing Pressure and Design of Rectangular Steel Tubular Column Baseplate under Concentric Loadings (중심 압축력을 받는 각형강관기둥 베이스플레이트의 지압응력과 설계에 대한 연구)

  • Lee, Seung Joon;Kim, Jeong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.463-470
    • /
    • 2004
  • In this study, the bearing pressure distribution and design method of rectangular steel tubular column base plates under concentric loading were investigated. In general, the size and thickness of the baseplate are determined with the assumption that the bearing pressure of the column baseplate is uniformly distributed. When the column is loaded lightly, however, the size of the baseplate becomes smaller, the thickness becomes thinner and the bearing pressure of the baseplate is not distributed evenly. In this study, the distribution of the bearing pressure was investigated using the experimental and analytical methods. Four test specimens of the rectangular steel column baseplate were fabricated and tested. The analysis of the specimens was done using the finite element analysis program ANSYS. The result was that it was appropriate to use the effective width method to design the lightly loaded column baseplate, because the bearing pressure was not distributed evenly and was only concentrated under the column section.

A Study on the Characteristics of the Hydrostatic Bearing by the Variation of the Orifice in Hydraulic Piston Motor (유압 피스톤 모터의 오리피스 변화에 따른 정압베어링의 특성에 관한 연구)

  • Kim, K.M.;Lee, Y.B.;Kim, T.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In the case of hydraulic piston motor, hydrostatic bearing is designed to be adapted the hydrostatic bearing for the relative lubrication in the structural design. It's available to make it highly efficient and that's why it's widely used. The thing which largely influence the high pressure, the high efficiency, and the life is the hydrostatic bearing between a shoe and a swash plate. In this study, with the most general "hydrostatic bearing shoe" that has one recess as the subject of this research, I designed and made the 4 kind of piston shoe that have different orifice diameter each other, and studied the features of the hydrostatic bearing by observing the change of the leakage flow rate, the torque and the volumetric efficiency through experiments on the changes of the pressure & the speed of the revolution. As a result, the bigger diameter of the orifice, the less torque. And with an increase of the orifice diameter under the high pressure, the leakage flow rate decreased remarkably. Also it was observed the leakage flow rate increased linearly according to the increase of the supply pressure.

  • PDF

Analysis of Cylindrical Hydrostatic Bearing (진원형 정수압 베어링의 해석)

  • 문호지;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.11a
    • /
    • pp.94-99
    • /
    • 1989
  • This paper analyzes file stiffness, damping coefficient, friction force and flow coefficient of externally pressurized oil journal beating, including the effect of journal rotation according to the Sommerfeld number. This paper assumed that the oil in the whole pocket has constant pressure, and that the oil in the whole bearing region has constant viscosity, temperature and density. Reynolds equation is derived from Nuvier - Stokes equation and continuity equation. And solved bearing pressure by ADI method for whole bearing region and fitted with out flow rate of pocket region. The model for numerical simulation is hydro - static oil journal bearing for high-speed, high-accuracy lathe spindle.

  • PDF

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator (초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator (초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 곽현덕;이용복;김창호;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF

A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing (정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구)

  • Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF

An Experimental Study on Porous Air Bearing Stiffness Characteristics (다공질 공기 베어링의 강성 특성에 관한 실험 연구)

  • Jung, Soon-Chul;Lee, Seong-Hyuk;Lee, Jae-Eung;Ji, Hong-Kyu;Lee, Dong-Jin;Ryu, Je-Hyoung;Choi, Hyoung-Gil;Kim, Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • In this paper, an experimental study on porous air bearing stiffness for ultra precision positioning system was performed. In general manufacturer provide bearing stiffness under specific air pressure, but the air pressure used in the field is different. Therefore it is necessary to know the stiffness of air bearing under the pressure used in the field. In order to know that, experimental device which can realize actual operating conditions was made. Using this device, static and dynamic stiffness of air bearing can be obtained. As a result, displacement error occurred around 1 $\mu$m at recommended load.

  • PDF