• Title/Summary/Keyword: Bearing Pressure

Search Result 878, Processing Time 0.027 seconds

The effects of the 4-weeks visual biofeedback training in individuals with hyperextended knee

  • Jung, Sung-hoon;Choi, Sil-ah;Ha, Sung-min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.55-60
    • /
    • 2021
  • This study aims to investigate the effects of 4 weeks visual biofeedback training on the knee joint angle and muscle activities of lower extremity. The participants in this study were 15 volunteers with hyperextended knee. To improve the hyperextended knee, visual biofeedback training was used during 4 weeks. The training is an exercise to maintain the balance between the anterior weight bearing and posterior weight bearing of the plantar foot. The knee joint angle significantly increased and the muscle activity of tibialis anterior was significantly decreased after visual biofeedback training. It was confirmed that visual biofeedback training of correcting hyperextended knee through the information on the plantar pressure distribution has a therapeutic effect.

Air Cooling Characteristics of a High Speed Spindle System for Machine Tools (공작기계용 고속주축계의 공기냉각특성에 관한 연구)

  • Choi, Dae-Bong;Kim, Suk-Il;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.

Correlation between the subjective comfort and elastic body pressure distribution on a bicycle saddel (자전거 안장의 연체압 분포와 주관적 안락도의 상관성에 관한 연구)

  • 최정윤;박경수
    • Proceedings of the ESK Conference
    • /
    • 1993.04a
    • /
    • pp.145-145
    • /
    • 1993
  • In bicycle design, saddle is the major part which effects the subjective comfort of rider. This study examines the correlation between the subjective comfort and elastic body pressure. The elastic body pressure measuring instrument for free-form surface such as saddle is developed by force sensor register, A/D converter and computer. The subjective comfort is measured quantit- atively by 11-point scale method and the elastic body pressure distribution is obtained through 3 different saddles at 4 postures. The pressure distribution is presented by computerized equi- pressure contour. While mean pressure, standard deviation of pressure, maximum pressure are inversely proportional to subjective comfort, the modified saddle-bearing weight which is the surface integral of pressure is directly proportional. Consequently, standard deviation of pressure is most important characteristic which affects variation of subjective comfort.

  • PDF

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

An Analysis on the Lubricating Films Formed on the Surfaces of the Line-Contact Bearings (선접촉 베어링면에 형성되는 윤활유막 특성 해석)

  • 이영제
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.75-81
    • /
    • 1994
  • In load sharing model, the load is supported by the contacting asperities and the lubricants. The asperity contact area of two sliding surfaces are relatively very small as compared with the apparent contact area. The asperity contact pressure is relatively higher than the lubricant pressure. With the combined effect of asperity and lubricant pressure, the surface roughness and temperature rise must be considered to calculate the lubricant film thickness of the line-contact bearing.

Optimal Design of the Crank Press Main Journal Bearings (크랭크 프레스 주축 저널 베어링의 최적 설계)

  • 심현해;김창호;권오관
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.69-75
    • /
    • 1989
  • The mobility method of dynamically loaded journal bearings was applied to optimize the lubrication of the main journal bearing of the crank press. The effects of oil viscosity, temperature bearing clearance, length, the existence of the circumferential groove, peak press force, and crank rpm were examined. From the results of the minimum film thickness and the maximum film pressure, some of the factors could be optimized, and the degrees of the beneficial and detrimental effects of the others could be estimated.

Mixed Lubrication Analysis of Parallel Thrust Bearing by Surface Topography (표면거칠기를 고려한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.134-141
    • /
    • 2000
  • The real area of contacts, average film thickness, mean real pressure, and mean hydrodynamic pressure are investigated numerically in this study, especially for the parallel thrust bearing. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation contained flow factors and contact factor is applied to predict the effects of surface roughness in mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness and contact factor is introduced to relieve from obtaining the average film thickness. Therefore the computation time to obtain h can be reduced.

  • PDF

Experimental Study on Dependent Characteristics of Lead Rubber Bearing for Buildings (건물용 납면진받침의 의존성 평가 실험)

  • 정길영;박건록;하동호;김두훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.373-382
    • /
    • 2002
  • In this paper, the characteristic dependencies of LRB(lead rubber bearing) were studied by various prototype tests on LRB for buildings. The characteristics of LRB were dependent on displacements, repeated cycles, frequencies, vertical pressures and temperatures. The prototype test showed that the displacement was the most governing factor influencing on characteristics of LRB. The effective stiffness and equivalent damping of LRB were decreased with large displacement, and increased with high frequency. After the repeated cyclic test with 50 cycles, the effective stiffness and equivalent damping of LRB were reduced by approximately 20% compared with those of the 1$^{st}$ cycle. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness.s.

  • PDF

The Influence of Surface Roughness on Thermohydrodynamic Analysis (열유체 윤활해석에 의한 표면 거칠기가 마찰거동에 미치는 영향 고찰)

  • Kim, Joon-Hyun;Kim, Seong-Keol;Kim, Joo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.299-304
    • /
    • 2001
  • An approach is developed for parametric investigation of the influence of the surface roughness on thermohydrodynamic analysis with film conditions which systemically occur in journal bearings. A parametric investigation is performed for predicting the bearing behaviors such as pressure and temperature distributions in lubricating films between the stationary and moving surfaces determined by absorbed layers and interfaces on the statistical method for rough surface with Gaussian distribution. The layers expressing the effects of surface roughness are expressed as functions of the standard deviations (${\sigma}$) of each surface and surface orientation (j) to explain the flow patterns between both rough surfaces. The coupled effect of surface roughness and shear zone dependency on hydrodynamic pressure and temperature has been found by solving the present model in non-contact mode and contact mode, respectively.

  • PDF