• Title/Summary/Keyword: Bearing Pressure

Search Result 878, Processing Time 0.023 seconds

A Study on Lubrication Characteristic of the Hydrostatic Bearing In Swash Plate Type Piston Motor (사판식 피스톤 모터의 정압베어링 윤활특성에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.5-9
    • /
    • 2011
  • The hydraulic piston using a hydrostatic bearing has been used widely due to its satisfying performance at very high pressurized circumstance and relative higher power density in comparison to conventional one. For high pressurization, enhanced efficiency and long durability of the hydraulic piston, the design of hydrostatic bearing is at issue, which is installed between piston shoe and swash plate. The performance of the hydrostatic bearing is influenced significantly by the assembly of the piston shoe consisting of circular land and recess. In this study, to estimate the performance of the hydrostatic bearing, the characteristics for lubrication of the assembly of the piston shoe were investigated by measuring a leakage rate of hydraulic fluid under an experimental condition, where a rotating velocity of the piston, hydraulic pressure and temperature of the hydraulic fluid were changed systematically. In addition, a film thickness of the hydraulic fluid on the piston shoe was measured and compared to theoretical one.

A study on hydrostatic characteristics of air-lubricated journal bearing using multi-leaf type foils (다엽형상의 포일을 사용한 공기 저널 베어링의 정특성에 관한 연구)

  • 김태호;이용복;김창호;이남수;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.177-185
    • /
    • 2000
  • The characteristics of multi-leaf feil bearing are investigated. The Foil bearing is preloaded and has several leaf foils modeled by curved beams. An analysis of the air foil bearing was performed, considering effects of foil deflection and compressible lubrication equation simultaneously. A parametric study shows that the number of foils significantly affect the static characteristics of air foil bearings and describes what the minimum film thickness means. The results include pressure profile, load capacity, dimensionless torque and minimum film thickness in the foil bearing.

  • PDF

Coupled Boundary Effects on a Gas Lubricated Bearing far a Scaled-Up Micro Gas Turbine

  • Hyunduck Kwak;Lee, Yong-Bok;Kim, Chang-Ho;Gunhee Jang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.243-249
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication for Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated far Micro Gas Tlubine bearings. The coupled efffect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

Case study of application on pelvic manipulation which low back pain patient in unilateral weight bearing due to pelvic imbalance (골반 불균형에 의한 편측체중지지 요통환자의 골반도수교정 적용사례)

  • Kim, Han-Il;Kim, Sang-Su;Kim, Gee-Sun;Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.15 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • Purpose: to recognized that influence of decrease low back pain, change pelvic structure and balance control on unilateral weight bearing after application on pelvic manipulation which low back pain patient in unilateral weight bearing due to pelvic imbalance. Methods: The patient with low back pain in unilateral weight bearing due to pelvic imbalance was 39year female. one subject received intervention of pelvic manipulation on sidelying position and reaching exercise on sitting position which during 2 weak at the 3 time per a weak, each 30 minutes. outcomes measured were Facia l Action Coding System(FACS), Radiograph(Lumbar-Spine Anteroposterior AP.), Pressure Scan. Results: The results of this study were summarized below : 1. FACS score were Pre: min.4 - max.6 and Post: min.2 - max.4. 2. Radiograph measured Ilium width were Pre: Lt.14cm, Rt.12.7cm and Post: Lt.13.4cm, Rt.13cm which discrepancy of Ilium height were Pre: 1cm and Post: 0.2cm. 3. Pressure scan measured Pre: Lt. 36.8%, Rt.40.2% and Post: Lt.41.3%, Rt.36.2%. Conclusion: Pelvic manipulation applied a patient with low back pain in unilateral weight bearing due to pelvic imbalance suggest that can decrease low back pain, change pelvic structure and balance control on unilateral weight bearing.

  • PDF

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

Noise Estimation of Oil Lubricated Journal Bearings (유체 윤활 저널 베어링의 소음 예측)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1058-1064
    • /
    • 2003
  • Noise estimating procedures of oil lubricated journal bearings are presented. Nonlinear analysis of rotor-bearing system including unbalance mass of the rotor is performed in order to obtain acoustical properties of the bearing. Acoustical properties of the bearing are investigated through frequency analysis of the pressure fluctuation of the fluid film calculated from the nonlinear analysis. Noise estimating procedures presented in this paper could aid in the evaluation and understanding of acoustical properties of oil lubricated journal bearings.

Performance Analysis of Gas Lubricated Flexure-Pivot Tilting Pad Journal Bearings

  • Kim, Jong-Soo;F. Zeidan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.224-230
    • /
    • 2001
  • A numerical analysis for the gas lubricated flexure-pivot tilting pad journal bearing has been accomplished. The film pressure are obtained by Newton-Raphson method and the dynamic coefficients are evaluated by the pad assembly method. The effects of the pivot position of the pad on the static and dynamic characteristics are presented for three pads journal bearing with LBP. The optimum pivot positions for the static performance is different from that of the dynamic performance.

  • PDF

Development of a Static Pressure Radial Air Bearing and Estimate of Design Variables (정압형 레디얼 공기베어링 개발 및 설계인자 영향 평가)

  • Kim, Ock-Hyun;Lee, Kyu-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.502-506
    • /
    • 2012
  • Air bearing is characterized by its extremely low friction and cleanliness such that it is widely used especially for spindles with ultra-high rotational speed at several tens of thousands rpm. This paper contributes to design of a static radial air bearing suggesting numerical analysis to anticipate its performances. The numerical analysis is an iteration method based on finite difference formulation of the Reynolds equation. A prototype air bearing has been designed and manufactured. Its load capacity has been measured and compared with the numerical solutions. The result shows good consistency between the experiment and theory, which informs that the numerical analysis can be used as an useful tool to anticipate the performances. Effects of design variables on the bearing performance have been examined by Taguchi's experimental methods using orthogonal array. Number of holes for supplying pressurized air, clearance between shaft and bearing, the hole diameter and bearing length are chosen for the design variables. The result shows that the clearance and the bearing length are the most influential variables while the others can be considered as almost negligible.

Characteristics of Pressure Distribution of Journal Bearing according to Lining Material (라이닝 재료에 따른 저널 베어링의 압력 분포 특성)

  • Shin, Sang-Hoon;Rim, Chae Whan;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.480-485
    • /
    • 2017
  • The main reason for the heat induced accidents occurring at the after stern tube journal bearing is the excessive local pressure caused by the deflection of the propulsion shaft due to the propeller loads. It is expected that the contact area could beenlarged and the local pressure reduced accordingly by using a lining material having alow Young's modulus instead of the existing white metal. The purpose of this work is to investigate the characteristics of the pressure distribution and determine the allowable pressure value in the case where bearing products made of materials having a low Young's modulus are used. In this study, the propeller loads, heat effect, and hull deflection are considered in the evaluation of the local pressure of the ship propulsion shaft. Also, the Hertzian contact condition was applied. From the analysis results in the case where a lining material with a low Young's modulus was used, it was found that a robust design could be achieved and the local pressure could be reduced effectively independent of the load conditions. It will be possible to producenew products made of materials having a low Young's modulus if the manufacturer confirms the performance specifications drawn by this study.