• Title/Summary/Keyword: Bearing Load

Search Result 2,009, Processing Time 0.028 seconds

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

A study on degree of inclination of model pile due to tunnelling (터널굴착에 따른 모형말뚝의 기울기 정도 연구)

  • Lee, Yong-Joo;Hwang, Jae-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • In this study, both the model test and the numerical analysis were carried out to figure out the physical behaviour of the model pile during the tunnelling. As a result, both the vertical and the horizontal displacements were simultaneously occurred in the model pile which is subjected to the working load during the volume loss. Consequently, the phenomenon of inclination took place in the model pile. The degree of inclination of the model pile depends on volume loss due to tunnel excavation, pile tip's offset from the tunnel centre, and bearing ground conditions in which pile tip is located. Therefore, in the planning stage of urban tunnelling not only the ground behaviour with respect to the pile locations, but also the physical behaviour of pile itself should be carefully analysed to avoid damage of adjacent buildings.

A Quantitative Physical Parameter for Detection of Ultimate Failure State of Soil Using CEL Method in Finite Element Analysis (CEL 기법을 이용한 유한 요소 해석에서 지반의 극한 파괴 상태 감지를 위한 정량적 물리량 기준)

  • Kim, Seongmin;Lee, Ju-Hyung;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.59-69
    • /
    • 2018
  • In order to use the limit equilibrium theory, it is necessary to find a slip line under the ultimate failure condition. The strength reduction method using the Lagrangian finite element method defines the ultimate failure state at a time when the numerical solution cannot converge within the certain number of the iteration. When the coupled Eulerian-Lagrangian (CEL) method is used, however, such definition is inappropriate because the numerical solution of the CEL method can converge even under the ultimate failure condition. In this study, an objective condition designating the ultimate failure state in the finite element analysis adopting the CEL method was proposed. In the problem of the bearing capacity of the undrained soft ground subjected to the strip footing loading, we found that the rate of the plastic dissipated energy is highly sensitive at the load of the theoretical limit of the ultimate failure state.

Anti-collapse performance analysis of unequal span steel-concrete composite substructures

  • Meng, Bao;Li, Liangde;Zhong, Weihui;Tan, Zheng;Zheng, Yuhui
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.383-399
    • /
    • 2021
  • In the study, three 1:3-scale unequal span steel-concrete composite substructures with top-seat angle and double web angle connection were designed and identified as specimens GTSDWA-0.6, GTSDWA-1.0, and GTSDWA-1.4. Pseudo-static tests and refined numerical model analysis were conducted to examine the anti-progressive collapse performance of a semi-rigid steel-concrete composite substructure. The results indicated that the failure modes of the three specimens revealed that the fracture occurred in the root of the long leg of the top/seat angle in tension at the connection. With increases in the span ratio of the left and right composite beams, the bearing capacities of the composite substructures decreased, and the corresponding displacement increased. With respect to GTSDWA-0.6 and GTSDWA-1.4, the resistance due to the short composite beam corresponded to 62% and 60%, respectively, and the total resistance provided by the short composite beam exceeded that of the long composite beam. With respect to GTSDWA-1.0, the resistance due to the left and right composite beams was similar. All three specimens underwent the flexure mechanism and flexure-axial mixed mechanism stages. They resisted the external load mainly via the flexure mechanism. Moreover, the addition of stiffeners on both sides of the top and seat angles is advantageous in terms of improving the collapse resistance and ductility of unequal span composite substructures.

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant (액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가)

  • Kwon, Gyubin;Jang, Youngjun;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

A Study on Weight for Capability Evaluation in the Safety Inspection for Vertical Extension Remodeling of the Apartment Housing (증축형 리모델링 안전진단 내하력 평가의 가중치에 대한 연구)

  • Lim, Chi-Sung;Karl, Kyoung-Wan;Oh, Dae-Jin;Lee, Seok-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • As vertical extension remodeling policy was implemented in 2014, Safety Inspection Manual was established to ensure structural safety during the vertical extension remodeling. In the manual, the story weight for capability evaluation was based on the Safety Inspection Manual for Reconstruction. Although capability evaluation in the vertical extension remodeling is more important than reconstruction, engineering basis for the story weight is insufficient. Therefore it is necessary to improve the method of calculating the story weight. In this study, story importance and story weight were defined through the case analysis of capability evaluation in order to provide engineering basis for story weight. Also, new story weight equation was presented considering the load-bearing ratio of structural members.

A Study on the Durability Evaluation Criteria for the Vertical Extension Remodeling of Apartment (수직 중축형 리모델링 안전진단 내구성 평가기준 합리화에 관한 연구)

  • Yoon, Sang-Chun;Shin, Dong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.197-205
    • /
    • 2020
  • In 2014, The Housing Act amended to allows vertical extension and increases the units of housing (or total floor area) to site. Currently, the feasibility of performing vertical extension is evaluated based on safety diagnosis provisions and manuals with 1st investigation stage on slope, uneven settlement, load-bearing capacity, and durability. However, a need for more reasonable evaluation criteria for the investigation is still required because there had not been any other case study on the diagnosis for the vertical extension, and the engineering basis on evaluation criteria were not suggested. Accordingly, this study is intended to suggest feasible evaluation criteria on the carbonation, chloride ion contents, corrosion of reinforcements, crack and surface deterioration of concrete for durability assessment by codes and standards of domestic and foreign countries. The results of this study are expected to be beneficial for establishing more reasonable durability evaluation criteria, and in turn, more reliable assessment protocol for vertical extension.

Strength Properties of High-Strength Concrete Piles Using an Industrial by-Product (산업부산물을 치환한 고강도 콘크리트 말뚝의 강도 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon;Hwang, Sun-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • The necessity for ground reinforcement of structures has been increasing in South Korea because buildings have encountered constructional problems such as inclined structures and collapses caused by earthquakes or differential settlement of the foundations. With regard to a ground reinforcement method, an increasing number of high-strength concrete piles have been used based on their advantages, including a wide range of penetration depth and a high load-bearing capacity. However, problems such as the destruction of a pile head during on-site placement work can occur when the pile has insufficient strength. For this reason, the strength of such piles should be managed more thoroughly. Thus, this study analyzed the strength properties of high-strength concrete piles using blast furnace slag (BFS) powder as a cement replacement, which was generated as an industrial byproduct. The analysis results indicated that the compression strength of the concrete piles increased when 10% to 20% of the cement was replaced with ground granulated blast-furnace slag (GGBS). In addition, the compression strength of the concrete piles was calculated to be 80.6 MPa when 20% of the cement was replaced with GGBS, which was greater by 5% than that of an ordinary Portland cement (OPC) specimen.