• Title/Summary/Keyword: Bearing Load

Search Result 2,009, Processing Time 0.033 seconds

Development of Replacing Material for Sand Mat by Using Precious Slag Ball (풍쇄 슬래그를 이용한 샌드매트 대체재 개발에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Yoo, Jeong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Recently, new development projects are being carried out with the soft ground located along the West coast and the South coast. As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems Prior to structures are constructed by the method of improvement of soft ground. The sand mat is usually being used for improvement of soft ground as a horizontal drain material and loading base. But, as the volume is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the feasibility study to use of precious slag ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement character.

  • PDF

Concrete crack rehabilitation using biological enzyme

  • Chen, How-Ji;Tai, Pang-Hsu;Peng, Ching-Fang;Yang, Ming-Der
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.413-417
    • /
    • 2017
  • Concrete is a material popularly used in construction. Due to the load-bearing and external environmental factors during utilization or manufacturing, its surface is prone to flaws, such as crack and leak. To repair these superficial defects and ultimately and avoid the deterioration of the concrete's durability, numerous concrete surface protective coatings and crack repair products have been developed. Currently, studies are endeavoring to exploit the mineralization property of microbial strains for repairing concrete cracks be the repairing material for crack rehabilitation. This research aims to use bacteria, specifically B. pasteurii, in crack rehabilitation to enhance the flexural and compression strength of the repaired concrete. Serial tests at various bacterial concentrations and the same $Urea-CaCl_2$ medium concentration of 70% for crack rehabilitation were executed. The results prove that the higher the concentration of the bacterial broth, the greater the amount of calcium carbonate precipitate was induced, while using B. pasteurii broth was for crack rehabilitation. The flexural and compression strengths of the repaired concrete test samples were the greatest at 100% bacterial concentration. Compared to the control group (bacterial concentration of 0%), the flexural strength had increased by 32.58% for 1-mm crack samples and 51.01% for 2-mm crack samples, and the compression strength had increased by 28.58% and 23.85%, respectively. From the SEM and XRD test results, a greater quantity of rectangular and polygonal crystals was also found in samples with high bacterial concentrations. These tests all confirm that using bacteria in crack rehabilitation can increase the flexural and compression strength of the repaired concrete.

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

Finite element analysis on bio-mechanical behavior of composite bone plate for healing femur fracture considering contact conditions (접촉조건을 고려한 대퇴골 치료용 복합재료 고정판의 생체 역학적 거동에 관한 유한요소해석)

  • Kim, Suk-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, finite element analyses for estimating the behavior of fractured femur just after the operation were carried out by using ABAQUS 6.71. A stainless steel bone plate and composite bone plates with various stacking angles were considered to find out the effect of bone plate properties on bone fracture healing. In order to simulate the actual state, contact conditions between the plate and bone and fractured bones were imposed on the finite element models and the whole analysis was divided by two steps; screw fastening step and load bearing step. The stress and strain distributions at the fracture site for the cases of the stainless steel and composite bone plates were analyzed and compared with. From the analyses it was found that the composite bone plate had potential advantages for effective bone fractures healing relieving stress shielding effect.

Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel (2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가)

  • Hur, Kwang-Beom;Lee, In-Cheol;Gung, Gye-Jo;Cho, Yong-Sang;Lee, Sang-Guk;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

Lubrication Properties of Various Pattern Shapes on Rough Surfaces Considering Asperity Contact (돌기접촉을 고려한 거친 표면 위 다양한 패턴 형상에 따른 윤활 특성 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2018
  • Two surfaces that have relative motion show different characteristics according to surface roughness or surface patterns in all lubrication areas. For two rough surfaces with mixed lubrication, this paper proposes a new approach that includes the contact characteristics of the surfaces and a probabilistic method for a numerical analysis of lubrication. As the contact area of the two surfaces changes according to the loading conditions, asperity contact is very important. An average flow model developed by Patir-Cheng is central to the study of lubrication for rough surfaces. This average flow model also refers to a multi-asperity contact model for deriving a modified Reynolds equation and calculating the lubricant characteristics of a bearing surface with random roughness during fluid flow. Based on the average flow model, this paper carried out a numerical analysis of lubrication using a contact model by considering a load change made by the actual contact of asperities between two surfaces. Lubrication properties show different characteristics according to the surface patterns. This study modeled various geometric surface patterns and calculated the characteristics of lubrication.

A Study for the Screen Door Motor System Driving Stiffness of Dynamic Load Condition (스크린 도어 모터 시스템의 동하중 상태 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • The initial urban railway was only required to perform its role as means of transportation. As the time of staying in an underground platform was extended, it has been faced with the issues of environmental improvement as a living space. Therefore, the sliding automatic door, which is the basis of the screen door, is used widely for large distribution stores, hospitals, restaurants, and public offices for customers' convenience and as a convenient method to control access. Therefore, screen doors are required for the purpose of customers' convenience, securing safety, establishing pleasant station buildings, and energy savings. It would be also necessary to develop the optimal design technology for a screen door system through the design of element parts and to ensure reliability. Therefore, this paper calculated, interpreted, and verified the theoretical weight of the composition parts to verify the design drive hardness of the motor for screen doors necessary for the safety of subways.

A Study on the Optimization of Field Sampling Number of the Durability Evaluation Method for the Extension Remodeling of the Apartment Housing (공동주택의 증축형 리모델링 안전진단 내구성 평가의 표본 수 최적화 방안 연구)

  • Shin, Heechul;Choi, Kibong;Yoon, Sangchun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.60-68
    • /
    • 2018
  • The Housing Act amended allows vertical extension up to three floors and increases the units of housing (or total floor area) to site up to 15%. Currently, the feasibility of performing vertical extension is evaluated based on safety diagnosis provisions and manuals with preliminary investigations on slope, uneven settlement, load-bearing capacity, and durability. However, a need for more reasonable evaluation methodology for the preliminary investigation is still required because the current procedures are borrowed from safety diagnosis provisions and manuals for reconstruction without detailed examinations on evaluation criteria and sampling methods. Accordingly, this study is intended to suggest a method to obtain feasible sampling size for durability assessment by statistically analyzing the safety evaluation data sets on concrete carbonation and steel corrosion obtained from apartment complexes. The results of this study are expected to be beneficial for establishing more reasonable field sampling size, and in turn, more reliable durability assessment protocol for vertical extension.

A Study on Changes in Biomechanical Characteristics of the Foot with Respect to Wedge-type Insole Thickness (키높이 인솔두께에 따른 족부의 생체역학적 특성변화에 대한 연구)

  • Park, T.H.;Jung, T.G.;Han, D.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.80-90
    • /
    • 2013
  • Recently, functional insoles of wedge-type it is for the young to raise their height inserted between insole and heel cause foot pain and disease. Additionally, these have a problem with stability and excessively load-bearing during gait like high-heel shoes. In this study, we compared the changes in biomechanical characteristics of foot with different insole thickness then we will utilize for the development of the insole with the purpose of relieving the pain and disease. Subjects(male, n = 6) measured COP(center of pressure) and PCP(peak contact pressure) on the treadmill(140cm/s) using F-scan system and different insole thickness(0~50 mm) between sole and plantar surface during gait. Also, we computed changes of stresses at the foot using finite element model with various insole thickness during toe-off phase. COP moved anterior and medial direction and, PCP was increased at medial forefoot surface, $1^{st}$ and $2^{nd}$ metatarsophalangeal, ($9%{\uparrow}$) with thicker insoles and it was show sensitive increment as the insole thickness was increased from 40 mm to 50 mm. Change of the stress at the soft-tissue of plantar surface, $1^{st}$ metatarsal head represents rapid growth($36%{\uparrow}$). Also, lateral moments were increased over the 100% near the $1^{st}$ metatarsal as the insole thickness was increased from 0 mm to 30 mm. And it is show sensitive increment as the insole thickness changed 10 mm to 20 mm. As a result, it was expected that use of excessively thick insoles might cause unwanted foot pain at the forefoot region. Therefore, insole thickness under 30 mm was selected.