• Title/Summary/Keyword: Bearing Design

Search Result 2,051, Processing Time 0.027 seconds

A Study on the Stern Bearing Damage and Shaft Alignment for 37K DWT Product/Chemical Tanker (37K DWT 석유화학제품 운반선의 선미관 베어링 발열 사고 및 축계정렬에 대한 연구)

  • Park, Geumsung;Koh, Changik;Chung, Jaewook;Nam, Gunsik;Chae, Junsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • Together with the emerging of the Eco-ship, the application of large-diameter and high-efficiency propeller required more careful attention than before in the design of the shafting system. After the adoption of Environmentally Acceptable Lubricants (EAL) to the stern tube lubrication oil, a number of aft stern tube bearing accidents have been reported, and a variety of institutions have actively conducted research on the cause relationship. This study attempted to find the cause of the accident by measuring the alignment of the shafting system of a medium-sized product/chemical tanker with aft stern tube bearing damage and analyzing the reaction force of each bearing. In addition, a reasonable solution to the correction of the shaft alignment was suggested and the feasibility was reviewed. Through various measured data and analysis, the actual installation of shafting system was slightly different from the design drawing condition, but it was found that each bearing load distribution was within the allowable range. Therefore, it was confirmed that the cause of this accident was due to the dissatisfaction the misalignment slope of aft stern tube bearing rather than the effect of the bearing overload. As a solution to this cause, countermeasures such as double slope were suggested in the aft stern tube bearing, and the characteristics of EAL also seem to have an indirect effect.

Analysis of Bearing Capacity of Rock Socketed Pre-Bored Super Strength Piles Based on Dynamic Load Test Results (동재하시험을 통한 선단이 암반에 근입된 초고강도 매입 PHC 말뚝의 지지력 특성 분석)

  • Kim, Rakhyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics of bearing capacity of pre-bored super strength PHC (SSPHC) piles socketed in rocks based on dynamic load test results. Because the SSPHC piles have high compressive concrete strengths compared with those of regular high strength PHC piles, the allowable structural strengths of the SSPHC piles were increased. For optimal design of the super strength PHC piles, the geotechnical bearing capacity of the SSPHC piles should also increased to balance the increased allowable structural strength of the SSPHC piles. Current practices of pile installation apply the same amount of driving energy on both SSPHC and high strength PHC piles. As results of analyzing factors that influence bearing strength of SSPHC piles using dynamic load test, there was no relationship between SPT-N value at pile toe and end bearing capacity. But driving energy effects on end bearing capacity. In case of skin friction, driving energy had no effects. And reasonable method verifying design bearing strength is necessary because end bearing capacity is not considered sufficiently in restrike test results.

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

A Study on the Characteristics of an Externally Pressurized Conical Gas Bearing (외부가압 원추형 공기베어링의 특성에 관한 연구)

  • 박상신;한동철
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.35-39
    • /
    • 1991
  • The performance of the ultra-precision machine tools depends on the steady state characteristics of the main spindle bearings. For excluding the effect of machining error with perpendicularity, conical or spherical bearing has been used. In this paper, steady analysis of the externally pressurized conical gas bearing for ultraprecision is carried out based on the direct numerical method with assumption of point source. As a result of theoretical analysis, design parameters for optimal condition of conical gas bearing are' presented in dimensionless form.

Dynamic Characteristics of an Externally Pressurized Conical Gas Bearing (외부가압 원추형 공기 베어링의 동특성에 관한 연구)

  • 박상신;김우정;김종원;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.78-83
    • /
    • 1992
  • For excluding the effect of machining error such as perpendicularity, conical and spherical bearing has been used. In this paper, dynamic characteristics of the externally pressurized conical gas bearing for untraprecision main spindle is carried out based on the direct numerical method with assumption of point source. As a result of theoretical analysis, it is verified that coupled stiffness and damping exist and new design parameters for optimal condition of conical gas bearing are presented in dimensionless form.

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF

4-Axis Decentralized Control of Magnetic Bearing Equipped whth Collocatd Capacitance Sensor (동위형 축전 센서가 장착된 자기베어링의 4 축 분산식 제어)

  • 신동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.336-340
    • /
    • 1996
  • This paper presents the development of a collocated capacitance sensor and its application to the decentralized PID controller design for 4-axis magnetic bearing system. The main feature of the sensor is that it is made of a compact printed circuit board (PCB) so that it can be built in to the actuator coil of the magnetic bearing unit. The signal processing unit has been also developed. Then, decentralized PED controller is designed using simplified rotor system model. Finally, the experimental results on the performance of the collocated sensor based decentralized PID controller for a magnetic bearing rotor system is presented.

  • PDF

A Study on the Static Levitation Control of Magnetic Bearing using Optical Fiber Displacement Sensors (광파이버 변위 센서를 적용한 자기베어링 정적 부상 제어 연구)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.131-136
    • /
    • 2003
  • Five expensive sensors are necessary to control a magnetic bearing system. The sensor price rate of magnetic bearing system is high. So it is necessary that cheap and good sensor is developed. The optical fiber displacement sensor is adaptive to satisfy this condition. We can design magnetically suspended spindle based on static characteristic of optical fiber displacement sensor developed. The controller can be designed by decoupled feedback PD. Therefore, it is simpler than any other controller comparatively.

  • PDF

Analysis of Characteristics of Hydrostatic Bearing in Hydraulic Cylinder (유압 실린더 내의 정압 베어링 특성에 관한 연구)

  • 백승희;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.63-69
    • /
    • 1993
  • In this paper the characteristics of Hydrostatic Bearing of piston of cylinder are investigated . The dynamic characteristic equations of piston considering both parallel and rotational motion and time dependent modified Reynolds Equation are analyzed and the dynamic pressure distribution of oil film is numerically calculated by perturbation method and finite difference method. and the atatic analysis is carried out. so, the influence of design parameter of piston on the characteristic of bearing is analyzed.

  • PDF

Journal Bearing Design Retrofit for Process Large Motor-Generator - Part II : Rotordynamics Analysis (프로세스 대형 모터-발전기의 저어널 베어링 설계 개선 - Part II : 로터다이나믹스 해석)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.265-271
    • /
    • 2012
  • In the preceding Part I study, for improving the unbalance response vibration of a large PRT motor-generator rotor fundamentally by design, a series of design analyses were carried out for bearing improvement by retrofitting from original plain partial journal bearings, applied for operation at a rated speed of 1,800 rpm, to final tilting pad journal bearings. To satisfy evenly key basic lubrication performances such as the minimum lift-off speed and maximum oil-film temperature, a design solution of 5-pad tilting pad journal bearings and maximizing the direct stiffness by about two times has been achieved. In this Part II study, a detailed rotordynamic analysis of the large PRT motor-generator rotor-bearing system will be performed, applying both the original plain partial journal bearings and the retrofitted tilting pad journal bearings, to confirm the effect of rotordynamic vibration improvement after retrofitting. The results show that the rotor unbalance response vibrations with the tilting pad journal bearings are greatly reduced by as much as about one ninth of those with the plain partial journal bearings. In addition, for the tilting pad journal bearings there exist no critical speed up to the rated speed and just one instance of a concerned critical speed around the rated speed, whereas for the plain partial journal bearings there exist one instance of a critical speed up to the rated speed and two instances of concerned critical speeds around the rated speed.