• Title/Summary/Keyword: Beamforming System

Search Result 357, Processing Time 0.029 seconds

The Performance Analysis of Beamforming Algorithm for Anti-Spoofing

  • Choi, Yun Sub;Lee, Sun Yong;Park, Chansik;Ahn, Byoung Sun;Won, Hyun Hee;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The present paper shows that beamforming algorithm such as Minimum Variance Distortionless Response (MVDR) based on array antenna signal processing can have not only anti-jamming but also anti-spoofing characteristics. A beam pattern due to the beamforming algorithm strengthens received signal power as it is formed in the incident direction of desired signal. During the process, the effect of unnecessary signals such as spoofing signals can be reduced because the beam pattern reduces received signal power in the incident directions excluding the beam pattern-directed direction. In order to analyze the anti-spoofing effect due to the beamforming algorithm, a software-based simulation environment was configured. An arbitrary error was applied between incident direction of Global Positioning System (GPS) satellite signal and steering vector direction of the beamforming algorithm to analyze the received signal power and required conditions were provided to see the anti-spoofing effect due to the beamforming algorithm. The used antenna was 7-element planar circular array and beam patterns were formed through the MVDR algorithm.

On The Performance of a Hybrid Mode Beamforming in A Two-Cell System (두 셀 시스템 환경에서 하이브리드 모드 빔형성 성능에 대한 연구)

  • Yang, Janghoon;Chae, Hyukjin;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1133-1139
    • /
    • 2012
  • In this paper, hybrid mode beamforming (HMB) which allows simultaneous transmission of joint beamforming and disjoint beamforming is proposed. HMB is proven to be asymptotically optimal beamforming for sum rate growth. Extensive simulations show that HMB achieves nearly the same performance as joint encoding (JE) in symmetric interference channel. It is also shown that it outperforms JE in a more realistic asymmetric interference channel environment, though it still experiences some performance degradation due to power inefficiency of joint beamforming in asymmetric channel.

Differential Code-Filtering Correlation Method for Adaptive Beamforming

  • Hefnawi Mostafa;Denidni Tayeb A.
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.258-262
    • /
    • 2005
  • An adaptive beamforming system based on code filtering and differential correlation approaches is proposed. The differential correlation method was originally proposed for time delay estimation of direct sequence code division multiple access (DS-CDMA) systems under near-far ratio conditions and the code filtering correlation algorithm, on the other hand, was proposed for array response estimation in DS-CDMA systems under perfect power control. In this paper, by combining differential correlation concept with the code filtering beamforming technology, an accurate estimate of the beam forming weights and an enhanced performance of DS-CDMA systems under sever near-far ratio conditions is achieved. The system performance in terms of beam pattern and bit-error-rate (HER) shows that the proposed adaptive beamformer outperforms the conventional code filtering correlation technique.

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho Yoon;Woncheol Cho;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.925-935
    • /
    • 2022
  • In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.

A Research on the Application of MIMO/Beamforming Technologies for WiBro Evolution (WiBro Evolution 을 위한 MIMO/Beamforming 기술 적용 방안 연구)

  • Chung, Jae-Ho;Tcha, Yong-Ju;Roh, Jae-Hoon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.46-49
    • /
    • 2007
  • Multiple Antenna Technologies such as Multiple-Input Multiple-Output (MIMO) and Beamforming provide the increase of channel capacity and the reliability of wireless link. To obtain these advantages, WiBro, Mobile WiMAX and $4^{th}$ Generation System are employing multiple antenna technologies. There exist, however, many technical issues in considering the application of the technologies or the providing of services using them. In this paper, various technical topics are discussed and simple solutions are proposed. Beamforming has several technical issues which include coverage imbalance, difficulties in providing Multicast-Broadcast Service (MBS). In Addition, network planning is a critical point from a cell extension and initial network entry point of view. In case of MIMO, network deployment is discussed in that cellular data network such as WiBro has many repeaters. MIMO mode selection for maximizing the cell capacity is also covered.

  • PDF

Data-Driven-Based Beam Selection for Hybrid Beamforming in Ultra-Dense Networks

  • Ju, Sang-Lim;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the computation complexity for the analog beam selection, in this paper, two deep neural network models are used. The channel samples, channel gains, and radio frequency beamforming vectors between the access points and mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and are used to train the networks. The proposed machine-learning-based scheme provides an approach for the effective implementation of massive MIMO system in UDN environment.

Parameter Design for COBF Based on Kappa-factor Channel Model (Kappa-factor 채널모델에 기반을 둔 최적의 코드북 기반 Opportunistic Beamformer 파라미터 디자인)

  • Kang, Ji-Won;Kwon, Dong-Seung;Lee, Chung-Yong;Hwang, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.20-25
    • /
    • 2008
  • Codebook-based opportunistic beamforming (COBF) technique provides a beam selection diversity to the conventional opportunistic beamforming. In this paper, we design the random matrix and codebook for the COBF technique based on a kappa-factor channel model. Applying the proposed design to the COBF, nearly optimal beams are generated. Therefore, the COBF shows an outstanding performance without regard to the channel correlation related to the kappa-factor.

CQI Quantization Scheme in Random Beamforming System (Random Beamforming 시스템에서의 CQI 양자화 기법)

  • Ko, Kyeong-Jun;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.170-176
    • /
    • 2009
  • It has been known that multiuser MIMO systems have better performance than single-user MIMO systems. However, multiuser MIMO systems should eliminate inter-user interferences which are generated by allocating data to multiple users simultaneously There is zero-forcing beamforming (ZFBF) as scheme used widely among algorithms to eliminate inter-user interferences. But, it needs many feedback bits since BS knows quite exact channel state information to use this scheme in real systems. Random beamforming (RBF) was proposed to cope with a defect of ZFBF[1]. RBF is a multiuser scheme to send data to users who have optimal performance with predetermined codebook, each receiver feeds back a index of codeword which has optimal performance within the codebook and its CQI information. [1] assumes that the BS knows perfect CQI information of each receiver but CQI information should be quantized in the real systems. Therefore, in this paper, efficient CQI quantization scheme for RBF system is proposed.

Space Time Rake Receivers for Time Division Synchronous CDMA Base Stations

  • Xiao Yang;Lee Kwang-Jae;Lee Moon-Ho;Cho Sam-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • In this paper, we develop space-time(ST) Rake receivers for Time Division Synchronous Code Division Multiple Access(TD-SCDMA) base stations(BS). The beamforming of BS transforms the uplink MIMO channel space into many sub-sectors' channels to be nearly orthogonal, thus, well established 1-D Rake technology can be used to TD-SCDMA base station to construct ST Rake, which simplified the system's implementation as well as enlarged users' capacity by the beamforming. The construction and capacity of MIMO sub-sectors by multi-beamforming have been presented. The proposed ST Rake algorithm include the multi-beamforming algorithm for MIMO sub-sectors and classical 1-D Rake algorithm. The calculating formulas for interference plus noise ratio(SINR) and bit error rate(BER) have been derived. Simulations verify that the proposed ST Rake receiver for BS is effective, and the BS systems can get higher system capacity and can be of better performance than presented TD-SCDMA systems.

Combined Hybrid Beamforming and Spatial Multiplexing for Millimeter-Wave Massive MIMO Systems (밀리미터파 Massive MIMO 시스템을 위한 공간 다중화 및 하이브리드 빔 형성)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Nam-Il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.123-129
    • /
    • 2018
  • Recently, as required wireless communication traffic increase, millimeter wave mobile technologies that can secure broadband spectrum are gaining attention. However, the path loss is high in the millimeter wave channel. Massive MIMO system is being researched in which can complement the path loss by beamforming by equiped large-scale antenna at the base station. While legacy beamforming techniques have analog and digital methods, practical difficulties exist for application to massive MIMO systems in terms of system complexity and cost. Therefore, this paper studies a hybrid beamforming scheme for massive MIMO system in the millimeter wave band. Also this paper considers spatial multiplexing scheme to serve multi-users with multiple received antennas. Gains of the beamforming and the spatial multiplexing schemes are evaluated by analyzing the spectral efficiency.