• Title/Summary/Keyword: Beam-to-column connection

Search Result 488, Processing Time 0.022 seconds

Development of Beam-to-Column Connection Details with Horizontal Stiffeners in Weak Axis of H-shape Column (수평스티프너를 이용한 철골 기둥-보 약축접합부 상세 개발에 관한 연구)

  • Lee, Do Hyung;Ham, Jeong Tae;Kim, Sung Bae;Kim, Young Ho;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.641-652
    • /
    • 2004
  • The strong beam-to-column axis connections in steel structures have been studied for a long time to develop the strength and resistance of the connections. There have been very few studies, however, related to weak axis connections. Domestically, the bracket-type connection is commonly used in weak axis connections to elevate the efficiency of the constructions when the steel structures are constructed. The bracket-type connection detail has been applied moderately to weak axis connections. Therefore, the bracket-type connection in weak axis connections might be brittle and over-designed. The results of this study showed that the welding on the web of the column and the beam was unnecessary. In addition, this study confirmed that the new weak axis connection proposed in this study was superior to the previous connection in terms of strength and ductility.

Study on the behavior of beam-column connection in precast concrete structure

  • Kataoka, Marcela N.;Ferreira, Marcelo A.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.163-178
    • /
    • 2015
  • Due to the increase of the use of precast concrete structures in multistory buildings, this paper deals with the behavior of an specific type of beam-column connection used in this structural system. The connection is composed by concrete corbels, dowels and continuity bars passing through the column. The study was developed based on the experimental and numerical results. In the experimental analysis a full scale specimen was tested and for numerical study, a 3D computational model was created using a finite element analyze (FEA) software, called DIANA. The comparison of the results showed a satisfactory correlation between loading versus displacement curves.

Experimental study on replaceable precast concrete beam-column connections

  • Seung-Ho Choi;Sang-Hoon Lee;Jae-Hyun Kim;Inwook Heo;Hoseong Jeong;Kang Su Kim
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.49-58
    • /
    • 2024
  • The purpose of this study was to develop a system capable of restoring the seismic performance of a precast concrete (PC) connection damaged by an earthquake. The developed PC connection consists of a top-and-seat angle, post-tensioning (PT) tendons, and U-shaped steel. The PC beam can be replaced by cutting the PT tendons in the event of damage. In addition, the seismic performance of the developed PC beam-column connection was evaluated experimentally. A PC beam-column connection specimen was fabricated, and a quasistatic cyclic loading test was conducted to a maximum drift ratio of 2.3%. Subsequently, the PC beam was replaced by a new PC beam, and the repaired PC connection was loaded to a maximum drift ratio of 5.1%. The structural performance of the repaired PC connection was then compared with that of the original PC connection. The difference in the load at the drift ratio of 2.3% between the original and the repaired PC specimens was only 0.2%. The residual drift ratio in the repaired PC specimen did not exceed 1.0% at the 2.0 % drift ratio cycles, which satisfies the life safety performance level specified in ACI 374.2R-13. When the developed PC connection system is used, structural performance can be restored by rapidly replacing the damaged elements.

An Experiemetal Study for Improvement of Seismic Performance of Steel Beam-to-Column Connections (철골 보-기둥 접합부의 내진성능 개선을 위한 실험적 연구)

  • 이승준;김원기;이정웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.61-70
    • /
    • 1999
  • Cracking was observed in beam-to-column connections of many steel building frames during the 1994 Northridge and 1995 Kobe earthquakes. Thus extensive experimental researches are currently being conducted to improve the seismic performance of steel frames. A value of 0.015 radian was considered as a reasonable estimate of beam plastic rotation demand in steel moment-resisting frames subjected to severe earthquakes. The objective of this research is to develop a type of connection detail which moves the plastic hinge region in the beam away from the face of the column and can prevent cracking at the welded flange of the beam-to-column connection under seismic loading. An experimental investigation was undertaken on five beam-to-column connection specimens to study the performance of the connections with proposed details. The experiemental results showed that the flexural strength and rotational ductility of the beam connections were adequate for the seismic resistance steel frames to prevent possible cracks at the connections.

  • PDF

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

A Study on the Development and Test on Bearing Resistance of R/C Column-Steel Girder Connection (철근콘크리트 기둥과 철골보의 접합부 개발 및 지압성능에 관한 시험적 연구)

  • 최광호;이세웅;김재순;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.515-520
    • /
    • 1997
  • This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column with smooth stress transfer. As the first step of the structural performance tests of the system, bearing resistance test has been carried out for actual size specimen. From the test, the connection system has been proved to take good bonding and stress transfer to the surrounding concrete with negligible relative displacements.

  • PDF

Shear transfer mechanism in connections involving concrete filled steel columns under shear forces

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.449-460
    • /
    • 2018
  • This paper reports the experimental results of three through bolt beam-column connections under pure shear forces using modified push-out tests. The investigated specimens include extended end-plates and six through-bolts connecting square concrete-filled steel tubular column (S-CFST) to steel beams. The main goal of this study is to investigate if and how the mechanical shear connectors, such as steel angles and stud bolts, contribute to the shear transfer mechanisms in the steel-concrete interface of the composite column. The contribution of shear studs and steel angles to improve the shear resistance of steel-concrete interface in through-bolt connections was investigated using tests. The results showed that their contribution is not significant when the beam-column connection is included in the push-out tests. The specimens failed by pure shear of the long bolts, and the ultimate load can be predicted using the shear resistance of the bolts under shear forces. The predicted values of load allowed obtaining a good agreement with the tests results.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Development and Performance Evaluation of the Fourth Generation H-section Beam-to-Column Weak Axis Connection for Improving Workability (시공성 향상을 위한 제4세대 H형강 기둥-보 약축접합부의 개발 및 성능평가)

  • Kim, Pil-Jung;Boo, Yoon-Seob;Yang, Jae-Guen;Lee, Eun-Taik;Kim, Sang-Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.295-304
    • /
    • 2011
  • Bracket-type connection is often used for the weak-axis steel connection. In general, a beam-to-column connection for the bracket type is fabricated at the shop and abeam splice is additionally attached to the bracket in the site. Therefore, steel construction would not be competitive due to the increase of beam splice fabrication cost and overall construction period. This paper now proposes the new weak-axis connection types without a scallop, which has more definite strength flow, simple connection details, and better workability. From the series of experiments, the proposed connections showed better strength and ductility in comparison with standard details with scallop because the thickness of the welding plate for wide-flanged, beam-to-column connection can be easily adjusted.

Development of Beam-Column Connection for The New Apartment Structural System (장수명 공동주택용 보-기둥 접합부 시공방법 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Kim, Sun-Kuk;Park, Seon-Chee;Yun, Dai-Young
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.145-151
    • /
    • 2010
  • Bearing wall system was used extensively in most multi-residential apartment buildings in Korea. However, bearing wall apartments have the lack of architectural plan flexibility, remodelling-incompatible, causing serious economic losses in terms of construction waste. Recently, many researchers have studied the use of Rahmen structure as a potential alternative. The beam-column connection in the paper for long-life apartment housing forms connection of a Rahmen structure utilizing the advantages of steel and reinforced concrete. In addition, reduction of cast-in place concrete and construction schedule is expected by using precast concrete. Reduction effect of quantity decreased construction costs and $CO_2$ emission of key construction materials. However, verifying the feasibility of new construction method entails numerous challenges. Accordingly, the purpose of this study is to analyze the construction feasibility of sleeve, coupler, and pressure welding connections for long-life apartment building structure. A 3D modeling software was used to perform the analysis, and a real scale model was created to verify the results of construction feasibility. By verifying the construction feasibility of beam-column connections, this study will contribute to the efficient application of these methods on construction sites.