• 제목/요약/키워드: Beam-to-Column Connections

검색결과 484건 처리시간 0.023초

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

Experimental fragility functions for exterior deficient RC beam-column connections before and after rehabilitation

  • Marthong, Comingstarful;Deb, Sajal K.;Dutta, Anjan
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1291-1314
    • /
    • 2016
  • The paper presents the development of experimental fragility functions for exterior RC beam-column connections based on results obtained from extensive testing carried out in the present study. Three typical types of seismically deficient beam-column connections, which are commonly prevalent in Indian sub-continent, were considered. These specimens were tested under cyclic displacement histories with different characteristics to induce different damage states. Rehabilitation specific fragility functions for damaged specimens were developed considering drift angle as a demand parameter. Four probability distributions were fit to the data and suitability of each distribution was evaluated using standard statistical method. Specimens with different damage states were rehabilitated appropriately and rehabilitated specimens were tested under similar displacement histories. Fragility functions for rehabilitated specimens have also been developed following similar procedure. Comparison of fragility functions for both original and rehabilitated specimens for each rehabilitation method showed close agreement, which establishes the effectiveness of the adopted rehabilitation strategies and hence would provide confidence in field application.

Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers

  • Jia, Liang-Jiu;Ge, Hanbin;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.687-704
    • /
    • 2014
  • A great number of moment-resisting steel structures collapsed due to ductile crack initiation at welded beam-column connections, followed by explosive brittle fracture in the Kobe (Hyogoken-Nanbu) earthquake in 1995. A series of experimental and numerical studies on cracking behaviors of beam-column connections in steel bridge piers were carried out by the authors' team. This paper aims to study the effect of post weld treatment on cracking behaviors of the connections during a strong earthquake event. Experiments of three specimens with different weld finishes, i.e., as-welded, R-finish, and burr grinding, were conducted. The experimental results indicate that the instants of ductile crack initiation are greatly delayed for the specimens with R-finish and burr grinding finishes compared with the as-welded one. The strain concentration effect in the connection is also greatly reduced in the specimens with post weld treatment compared with the as-welded one, which was also verified in the tests.

철골 보-기둥 접합부의 내진성능 개선을 위한 실험적 연구 (An Experiemetal Study for Improvement of Seismic Performance of Steel Beam-to-Column Connections)

  • 이승준;김원기;이정웅
    • 한국지진공학회논문집
    • /
    • 제3권4호
    • /
    • pp.61-70
    • /
    • 1999
  • 1994년 Northridge 지진과 1995년 Kobe 지진에서 많은 철골구조물의 보-기둥 접합부에 발생한 규열은 내진성능이 우수한 것으로 알려진 모멘트 저항 철골골조의 내진성능 개선에 대한 연구필요성을 제시하였다 일반적으로 모멘트 저항 골조가 강한 지진을 받을 때 보-기둥 접합부는 강도의 저하없이 소성 회전변형능력이 0.015이면 만족할 수 있다고 한다. 본 연구의 목적은 강한 지진하중에서도 철골구조의 보-기둥 접합부에서 용접부의 균열이 방지되고 연성적으로 충분한 에너지를 흡수하고 소산할 수 있는 접합부의 형태를 제안하고 그 거동을 조사하는 것이다 본 연구에서는 접합부의 형태를 제안하였으며 실험을 통하여 그 거동을 분석하였다 제안된 접합부 시험체에 대한 실험결과는 용접부에 균열이 발생하지 않았으며충분한 변형능력을 나타냈다.

  • PDF

A Simplified Steel Beam-To-Column Connection Modelling Approach and Influence of Connection Ductility on Frame Behaviour in Fire

  • Shi, Ruoxi;Huang, Shan-Shan;Davison, Buick
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.343-362
    • /
    • 2018
  • A simplified spring connection modelling approach for steel flush endplate beam-to-column connections in fire has been developed to enable realistic behaviour of connections to be incorporated into full-scale frame analyses at elevated temperature. Due to its simplicity and reliability, the proposed approach permits full-scale high-temperature frame analysis to be conducted without high computational cost. The proposed simplified spring connection modelling approach has been used to investigate the influence of connection ductility (both axial and rotational) on frame behaviour in fire. 2D steel and 3D composite frames with a range of beam spans were modelled to aid the understanding of the differences in frame response in fire where the beam-to-column connections have different axial and rotational ductility assumptions. The modelling results highlight that adopting the conventional rigid or pinned connection assumptions does not permit the axial forces acting on the connections to be accurately predicted, since the axial ductility of the connection is completely neglected when the rotational ductility is either fully restrained or free. By accounting for realistic axial and rotational ductilities of beam-to-column connections, the frame response in fire can be predicted more accurately, which is advantageous in performance-based structural fire engineering design.

철골 모멘트 접합부에서 웨브의 모멘트 전달효율과 변형도 집중과의 관계에 관한 해석적 연구 (Analytical Study on Relationship Between Moment Transfer Efficiency of a Beam Web and Strain Concentration at Steel Moment Connections)

  • 김영주;오상훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.695-703
    • /
    • 2004
  • 본 논문에서는 4개의 철골 해석모델과 1개의 합성보 해석모델에 대한 단조가력 해석의 결과를 나타냈다. 철골 기둥-보 접합부에서 웨브의 모멘트 전달효율과 변형도 집중에 대해서 조사하였다. 해석결과 각형기둥을 가진 모델의 모멘트 전달효율은 각형기둥 플랜지의 면외변형 때문에 H-기둥을 가진 모델에 비해서 빈약했다. 스캘럽과 얇은 각형기둥 두께 및 슬래브도 또한 모멘트 전달효율의 저하를 가져오는 원인으로서, 이는 보-기둥 접합부의 파단을 초래할 가능성이 크다. 해석 결과는 실험결과와 비교하였다. 실험결과를 기초로 하면, 각형기둥 또는 슬래브가 있는 접합부의 변형능력은 빈약한 모멘트 전달효율과 이에 따른 플랜지의 변형도 집중에 의해 감소했다.

Development of a Shear Strength Equation for Beam-Column Connections in Reinforced Concrete and Steel Composite Systems

  • Choi, Yun-Chul;Moon, Ji-Ho;Lee, Eun-Jin;Park, Keum-Sung;Lee, Kang Seok
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.185-197
    • /
    • 2017
  • In this study, we propose a new equation that evaluates the shear strength of beam-column connections in reinforced concrete and steel beam (RCS) composite materials. This equation encompasses the effect of shear keys, extended face bearing plates (E-FBP), and transverse beams on connection shear strength, as well as the contribution of cover plates. Mobilization coefficients for beam-column connections in the RCS composite system are suggested. The proposed model, validated by statistical analysis, provided the strongest correlation with test results for connections containing both E-FBP and transverse beams. Additionally, our results indicated that Architectural Institute of Japan (AIJ) and Modified AIJ (M-AIJ) equations should be used carefully to evaluate the shear strength for connections that do not have E-FBP or transverse beams.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.