• Title/Summary/Keyword: Beam-Spring Model

Search Result 203, Processing Time 0.028 seconds

Analysis of the strain energy release rate for time-dependent delamination in multilayered beams with creep

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • This paper is focused on delamination analysis of a multilayered inhomogeneous viscoelastic beam subjected to linear creep under constant applied stress. The viscoelastic model that is used to treat the creep consists of consecutively connected units. Each unit consists of one spring and two dashpots. The number of units in the model is arbitrary. The modulus of elasticity of the spring in each unit changes with time. Besides, the modulii of elasticity and the coefficients of viscosity change continuously along the thickness, width and length in each layer since the material is continuously inhomogeneous in each layer of the beam. A time-dependent solution to the strain energy release rate for the delamination is derived. A time-dependent solution to the J-integral is derived too. A parametric analysis of the strain energy release rate is carried-out by applying the solution derived. The influence of various factors such as creep, material inhomogeneity, the change of the modulii of elasticity with time and the number of units in the viscoelastic model on the strain energy release rate are clarified.

Occupant Behavior Analysis of Simplified Full Car Model in Consideration of Joint (결합부 강성을 고려한 단순차체모델의 승객거동 해석)

  • 김홍욱;박신희;강신유;한동철;김정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.220-227
    • /
    • 1998
  • In substitution of beam-nonlinear spring model for real-car, it may have errors due to complicated characteristics of joint and overestimation of joints stiffness. In this research, a method for the joint modeling was suggested by nonlinear static and dynamic analyses of beam and shell joint models and verified by the application of accomplished joint modeling method to simplified full car model. In consequence, modified simplified full car model was improved in local acceleration and rigid wall force. Finally, the frontal crash analyses with the dummy were established and the accelerations of accelerations of head, chest and pelvis had good agreements with those of shell model.

  • PDF

Development of Helical Rod Finite Element for the Dynamic Analysis of Cylindrical Springs (원통형 스프링의 동특성 해석을 위한 헬리컬 로드 유한요소 개발)

  • 김도중;이덕영
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.544-553
    • /
    • 1999
  • A 3-dimensional helical rod finite element is devloped for the dynamic analysis of cylindrical springs. Element matrices are formulated using the Galerkin's method, and an exact static deflection curve is used as a shape function. Because the resultant mass and stiffness matrices of the model are symmetric, effective direct solution method can easily be applied for analysing dynamic behavior of springs. The model is used to analyze the dynamic characteristics of a typical automotive valve spring. The effectiveness of the developed helical rod element is verified by comparing the results of the proposed method with those of a classical theory and experiments. The helical element developed in this study is superior to a straight beam element and a 2-dimensional curved beam element for this problem.

  • PDF

Story Drift of a Frame with Column Flange Bolted-Beam Web Welded Double Angle Connections (더블앵글로 접합된 골조의 수평처짐)

  • Yang, Jae-Guen;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.95-103
    • /
    • 2003
  • Frame is one of the most commonly used structural systems for the resistance of applied loads. Many researchers have recently conducted their studies to investigate the effect of several parameters such as the connection flexibility, boundary condition of each support, beam-to-column stiffness ratio. These parameters play important roles on the characteristic behavior of frames. A simplified spring model is proposed to obtain the story drifts of frames with various beam-to-column connection stiffnesses in this research. A point bracing system with adequate spring stiffness is also suggested to establish the relationship between the applied load and the resisting translational spring stiffness within the limit state of story drift.

  • PDF

Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Hozhabrossadati, Seyed Mojtaba
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2018
  • This paper investigates the free vibration analysis of double-beam system coupled by a two-degree-of-freedom mass-spring system. In order to generalize the model, the main beams are assumed to be elastically restrained against translation and rotation at one end and free at the other. Furthermore, the mass-spring system is elastically connected to the beams at adjustable positions by means of four translational and rotational springs. The governing differential equations of the beams and the mass-spring system are derived and analytically solved by using the Fourier transform method. Moreover, as a second way, a finite element solution is derived. The frequency parameters and mode shapes of some diverse cases are obtained using both methods. Comparison of obtained results by two methods shows the accuracy of both solutions. The influence of system parameters on the free vibration response of the studied mechanical system is examined.

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

Equivalent Beam Joint Modeling and Vibration Analysis Using Vehicle Side Key Sections (차체 Side Key Section 을 이용한 등가빔 결합부 모델링 및 강성해석)

  • Sung, Young-Suk;Yim, Hong-Jae;Kim, Ki-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.252-257
    • /
    • 2006
  • Low vibration characteristics of a vehicle are mainly influenced by the local stiffness of the joint structure beam section. The method of substituting equivalent beam element to spring element for the joint is presented. Formation process of the equivalent beam joint modeling is described in terms of key section properties. To get required dynamic characteristics section properties of the equivalent beam element are set to design variables. The study shows that the equivalent beam joint model can be effectively used for low frequency vibration analysis of a vehicle.

  • PDF

Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End (끝단에 스프링과 질량을 가진 단진보의 자유진동해석)

  • Yu, Chun-Seung;Hong, Dong-Pyo;Chung, Tae-Jin;Chung, Kil-To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

Modeling Techniques of the Complex Shear Wall Structure on a Common Foundation (공동기초상 복합 전단벽 구조물의 모델링 기법)

  • 김종수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.241-248
    • /
    • 1997
  • The super-structure in a soil-structure interaction analysis is commonly idealized as lumped parameter system. In this study, the complex shear wall structure is modeled using three different kinds of modeling techniques : 1) full FEM comparatively as an exact solution, 2)equivalent shear spring model assuming mainly shear deformations of the wall, 3) equivalent beam-stick model made by independent static analysis. Dynamic characteristics due to three different modeling methods are compared and investigated before performing structural response analysis. The beam-stick model in comparison to shear spring model gives closer dynamic responses when compared with the full FEM, even though it requires additional unit load static analyses.

  • PDF

Free vibration analysis of tall buildings with outrigger-belt truss system

  • Malekinejad, Mohsen;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.89-107
    • /
    • 2011
  • In this paper a simple mathematical model is presented for estimating the natural frequencies and corresponding mode shapes of a tall building with outrigger-belt truss system. For this purposes an equivalent continuum system is analyzed in which a tall building structure is replaced by an idealized cantilever continuum beam representing the structural characteristics. The equivalent system is comprised of a cantilever shear beam in parallel to a cantilever flexural beam that is constrained by a rotational spring at outrigger-belt truss location. The mathematical modeling and the derivation of the equation of motion are given for the cantilevers with identically paralleled and rotational spring. The equation of motion and the associated boundary conditions are analytically obtained by using Hamilton's variational principle. After obtaining non-trivial solution of the eigensystem, the resulting is used to determine the natural frequencies and associated mode shapes of free vibration analysis. A numerical example for a 40 story tall building has been solved with proposed method and finite element method. The results of the proposed mathematical model have good adaptation with those obtained from finite element analysis. Proposed model is practically suitable for quick evaluations during the preliminary design stages.