• 제목/요약/키워드: Beam search

검색결과 191건 처리시간 0.027초

통합적 인공지능 기법을 이용한 결함인식 (Crack Identification Based on Synthetic Artificial Intelligent Technique)

  • 심문보;서명원
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

통합적 인공지능 기법을 이용한 결함인식 (Crack identification based on synthetic artificial intelligent technique)

  • 심문보;서명원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

개선된 점진적 구조 최적화 기법을 이용한 콘크리트 구조물의 응력경로 탐색 (The Rearch of Stress Route for Concrete Structure using Advanced Progressive Optimization)

  • 김시환;윤성수;박진선;전정배
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.153-163
    • /
    • 2011
  • This research describe improved algorithm that is able to decide terminal criterion of Evolutionary Structural Optimization (ESO), reducing load of calculation to search load path of concrete beam, and apply to agricultural facilities. The ESO method is that make to discrete structure, structural analyze each element stress through FEM. And repeat generation with next material condition to become for most suitable composing. Individual element introduces concept of zero stiffness, but zero stiffness decisions are gone to direction of exclusion. In this stduy, improve algorithm to be convergence by 'Rule of Alive or Die' in arrival because is most suitable. Also, existing terminal criterion lack consistency because that used depend on experience of researcher. This research procedure is fellowed. First, all modulus of elasticity assume a half of elasticity modulus of material, Second, structural analysis by FEM, Third, apply to the remove ratio and restoration ratio for the 'rule of alive or die'. Forth, reconstruct the element and material conditions. And repeat the first to forth process. The terminal time of evolutional procedure is the all elastic modulus of element changed to blank value or elasticity modulus value of original. Therefore, in this study, consist the algorithm for programming, and apply to the agricultural facilities with concrete.

바이스태틱 레이더의 시스템 불안정 요소들에 대한 분석 (Analysis of System Instability Factors in a Bistatic Radar)

  • 양진모;이민준;윤재룡;김환우
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.114-122
    • /
    • 2011
  • In this paper, we have identified the system instability factors in a bistatic radar system using pulse chasing and considered their effects on the bistatic receiver's MTI(Moving Target Indication) improvement performance. The pulse chasing is a method to efficiently scan a restricted search area within the limited transmitter power and time in a bistatic radar and to track a series of transmitted pulses using the receiver beam which has ideally matched to the pulse propagation rate. In this paper, we have discussed the interrelationship between the pulse chasing and time and frequency/phase synchronization and described the effects of the identified system instability factors on two kinds of MTI filter configuration, single delay-line and double delay-line, in the bistatic radar. And also, we have confirmed that the overall system improvement is restricted by a lower improvement factor among identified them, and discussed the allowable tolerance of the time and frequency/phase synchronization in the bistatic system.

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System)

  • 남윤의;마사토 이노우에;하루오 이시가와
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

IDIOS: An innovative index for evaluating dental imaging-based osteoporosis screening indices

  • Barngkgei, Imad;Halboub, Esam;Almashraqi, Abeer Abdulkareem;Khattab, Razan;Al Haffar, Iyad
    • Imaging Science in Dentistry
    • /
    • 제46권3호
    • /
    • pp.185-202
    • /
    • 2016
  • Purpose: The goal of this study was to develop a new index as an objective reference for evaluating current and newly developed indices used for osteoporosis screening based on dental images. Its name; IDIOS, stands for Index of Dental-imaging Indices of Osteoporosis Screening. Materials and Methods: A comprehensive PubMed search was conducted to retrieve studies on dental imaging-based indices for osteoporosis screening. The results of the eligible studies, along with other relevant criteria, were used to develop IDIOS, which has scores ranging from 0 (0%) to 15 (100%). The indices presented in the studies we included were then evaluated using IDIOS. Results: The 104 studies that were included utilized 24, 4, and 9 indices derived from panoramic, periapical, and computed tomographic/cone-beam computed tomographic techniques, respectively. The IDIOS scores for these indices ranged from 0 (0%) to 11.75 (78.32%). Conclusion: IDIOS is a valuable reference index that facilitates the evaluation of other dental imaging-based osteoporosis screening indices. Furthermore, IDIOS can be utilized to evaluate the accuracy of newly developed indices.

The Effect of Cr Dosage on FePt Nanoparticle Formation

  • Won, C.;Keavney, D.J.;Divan, R.;Bader, S.D.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.182-188
    • /
    • 2006
  • The search for high-density recording materials has been one of most active and vigorous field in the field of magnetism. $FePt-L1_{0}$ nanoparticle has emerged as a potential candidate because of its high anisotropy. In this paper, we provide an overview of recent work at Argonne National Laboratory that contributes to the ongoing dialogue concerning the relation between structure and properties of the FePt nanoparticle system. In particular we discuss the ability to control structure and properties via dosing with Cr. Cr-dosed FePt films were grown via molecular beam epitaxy and annealed at $550^{\circ}C$ in an ultrahigh vacuum chamber, and were studied with the surface magneto-optic Kerr effect (SMOKE), scanning electron microscopy (SEM) and x-ray magnetic circular dichroism (XMCD). We found that small dosage of Cr helps to generate $L1_{0}$ phase FePt magnetic nanoparticles with small size, defined shape and regular spatial distribution on MgO (001) substrate. The nanostructures are ferromagnetic with high magnetic coercivity (${\sim}0.9T$) and magnetic easy axis in the desired out-of-plane orientation. We also show that controlling the lateral region where nanostructures exist is possible via artificial patterning with Cr.

재시동 조건을 이용한 유전자 알고리즘의 성능향상에 관한 연구 (A Study on Improvement of Genetic Algorithm Operation Using the Restarting Strategy)

  • 최정묵;이진식;임오강
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.305-313
    • /
    • 2002
  • 유전자 알고리즘은 적자 생존과 자연친화의 유전이론을 기초로 하여 이루어진 탐색기법이다. 유전자 알고리즘은 미분 정보 등과 같은 부가적인 정보없이 수렴함으로 전역적 최적값을 탐색하는 강인한 탐색기법으로 알려져 있다. 유전자 알고리즘은 연속형의 설계변수를 가지는 문제에서 세대가 계속 진행되어도 목적함수의 개선이 없이 조기에 수렴하는 경우가 있다. 또한 전역적 최적값 근처에서 수렴하지 못하고 목적함수값이 진동하여 수렴속도가 떨어지는 단점이 있다. 본 연구에서는 위와 같은 유전자 알고리즘의 단점을 보완하고자 재시동 조건과 엘리트 보존방법을 제안하였다. 수정된 유전자 알고리즘의 유용성을 검증하기 위해 3부재 트러스와 평면응력 외팔보에 적용하여 수렴 속도의 향상을 확인하였다.

PDP ITO 결함 검출기술에 관한 연구 (A Study on Inspection Technology of PDP ITO Defect)

  • 송준엽;박화영;정연욱;김현종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.191-195
    • /
    • 2003
  • The formation degree of sustain (ITO pattern) decides quality of PDP (plasma display panel). For this reason. it makes efforts in search defects more than 30 ${\mu}{\textrm}{m}$. Now, the existing inspection process is dependent upon naked eye or SEM equipment in off-line PDP manufacturing process. In this study developed prototype inspection system of PDP ITO glass. This system creates information that detects and sorts kind of defect automatically. Design ed inspection technology adopts line-scan method by slip-beam formation for the minimum of inspection time and image processing algorithm is embodied in detection ability of developed system. Designed algorithm had to make good use of kernel matrix which draws up an approach to geometry. A characteristic of area-shaped defects, as pin hole, substance, protrusion et al, are extracted from blob analysis method. Defects, as open, short, spots, et al, are distinguished by line type inspection algorithm. In experiment results, we could have ensured ability of inspection that can be detected with reliability of up to 95% in about 60 seconds

  • PDF

Experimental investigation and numerical analysis of optimally designed composite beams with corrugated steel webs

  • Erdal, Ferhat;Tunca, Osman;Ozcelik, Ramazan
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.1-14
    • /
    • 2020
  • Composite beams with corrugated steel webs represent a new innovative system which has emerged in the past decade for medium span in the construction technology. The use of composite beams with corrugated steel webs results in a range of benefits, including flexible spaces and reduced foundation costs in the construction technology. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In the current research, an optimal designed I-girder beam with corrugated web has been proposed to improve the structural performance of continuous composite girder under bending moment. The experimental program has been conducted for six simply supported composite beams with different loading conditions. The tested specimens are designed by using one of the stochastic techniques called hunting search algorithm. In the optimization process, besides the thickness of concrete slab and studs, corrugated web properties are considered as design variables. The design constraints are respectively implemented from Eurocode 3, BS-8110 and DIN 18-800 Teil-1. The last part of the study focuses on performing a numerical study on composite beams by utilizing finite element analysis and the bending behavior of steel girders with corrugated webs experimentally and numerically verified the results. A nonlinear analysis was carried out using the finite element software ANSYS on the composite beams which were modelled using the elements ten-node high order quadrilateral type.