• 제목/요약/키워드: Beam on time

검색결과 1,771건 처리시간 0.03초

가역성 원리를 이용한 반무한보의 진동 인텐시티 측정 (Measurement of Vibration Intensity of a Semi-Infinite Beam Using the Principle of Reciprocity)

  • 양귀봉;길현권;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1073-1077
    • /
    • 2001
  • The objective of this paper is to apply an experimental method based on the principle of reciprocity to measuring the structural intensity. Since only one accelerometer is used in this method it has the advantages of shortening measurement time. reducing accelerometer phase error. overcoming the limitation that the situation should be stationary during the experiment. It has been used to measure the vibration intensity of an infinite beam (beam with damped ends) and a semi-infinite beam (beam with simply supported and damped ends). Results showed that the experiment method based on the principle of reciprocity can be effectively used to measure the structural intensity.

  • PDF

Moving-load dynamic analysis of AFG beams under thermal effect

  • Akbas, S.D.
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.649-655
    • /
    • 2022
  • In presented paper, moving load problem of simply supported axially functionally graded (AFG) beam is investigated under temperature rising based on the first shear beam theory. The material properties of beam vary along the axial direction. Material properties of the beam are considered as temperature-dependent. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of material graduation, temperature rising and velocity of moving load on the dynamic responses ofAFG beam are presented and discussed.

Ar/Ar-$H_2$ 플라즈마 및 전자선 용해에 의한 인바 및 퍼멀로이 Fe-Ni 합금의 정련 (Refining of Invar and Permalloy Fe-Ni Alloys by $Ar/Ar-H_2$ Plasma and Electron Beam Melting)

  • 박병삼;백홍구
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.175-183
    • /
    • 1995
  • It is difficult to remove such interstitial impurities as sulfur, oxygen, hydrogen and carbon in Fe-Ni alloys. Thermodynamic and kinetic studies were carried out on the behavior of hydrogen gas, oxygen gas, Si, Al and slag, and the reaction time by the $Ar/Ar-H_2$ plasma and electron beam melting. After the addition of Al, Si, they were melted by Ar plasma with reaction time changed. 80%Ni-Fe alloys showed a better deoxidation than 36%Ni-Fe alloys. At $Ar-H_2$ plasma melting, the deoxidation was significant. In the case of the electron beam melting, the residual oxygen was higher than in Ar plasma melting because electron beam melting temperature was lower than that of Ar plasma. For the decaburization, it was melted by $Ar-O_2$ plasma melting, which could remove effectively carbon by activated oxygen in plasma. We added slag to Fe-Ni alloys for the desulfurization. As the result of this experiments, the amount of residual sulfur was not changed according to the slag ratio and reaction time.

  • PDF

Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석 (Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform)

  • 박호영;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1024-1032
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

집속이온빔을 이용한 나노 패턴 형성 (Fabrication of a Nano Pattern Using Focused Ion Beam)

  • 한진;민병권;이상조;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1531-1534
    • /
    • 2005
  • Nano pattern is being utilized to produce micro optical components, sensors, and information storage devices. In this study, a study on nano pattern fabrication using raster-scan type Focused Ion Beam (FIB) milling is introduced. Because the intensity of ion beam has Gaussian distribution, the overlapping of the Gaussian beam results in a 3D pattern, and the shape of the pattern can be adjusted by variation of FIB milling parameters, such as overlap, ion dose, and dwell time. The Gaussian shape of single beam intensity has been investigated by experiment, and 3D nano patterns with pitch of 200nm generated by FIB is demonstrated.

  • PDF

Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석 (Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform)

  • 박호영;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.400-406
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

  • PDF

Motion Analysis of a Translating Flexible Beam Carrying a Moving Mass

  • Park, Sangdeok;Youngil Youm
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.30-39
    • /
    • 2001
  • This paper investigates vibrational motion of a flexible beam fixed on a moving cart and carrying a moving mass. The equations of motion of the beam-mass-cart system are analysed through the unconstrained modal analysis. The exact normal mode solution used in modal analysis correspond to the eigenfrequencies for each position of the moving mass and to the ratios of the weight of the beam-mass-car system. Time solutions of normal modes are also transformed properly according to the position of the moving mass. Numerical simulations are carried out to obtain open-loop responses of the system in tracking pre-designed paths of the moving mass. The simulation results show that the model predicts the dynamic behavior of the beam-mass-cart system well. Experiments are carried out to show the validity of the proposed analytical method.

  • PDF

Dynamic/static stability characteristics of sandwich FG porous beams

  • Weijia Yu;Linyun Zhou
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.203-210
    • /
    • 2023
  • In the present research, dynamic deflections of a sandwich beam having functionally graded (FG) porous core have been investigated assuming that the sandwich beam is exposed to a pulse load of blast type. The two layers of sandwich beam have been made of a polymeric matrix reinforced by graphene oxide powder (GOP). The micromechanical formulation of the layers has been done via Halpin-Tsai model. The solution method is chosen to be Ritz method which is an efficient method to solve the system of equations of beams modeled based on a higher-order theory. To derive the time history of sandwich beam under pulse load, Laplace method has been used. The porosity content of the core, the GOP content of the layers, thickness of the layer and also duration of the applied load have great influences of the responses of sandwich beam.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석 (Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF