• Title/Summary/Keyword: Beam deformation

Search Result 1,223, Processing Time 0.026 seconds

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).

이형단면 코일 스프링의 응력해석 (Stress Analysis of a Coil Spring with Nonlinear Section)

  • 이인혁;한동철
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1831-1838
    • /
    • 1991
  • 본 연구에서는 와핑과 두 단면중심의 불일치에 의해 발생하는 기하중심의 이 동을 고려한 등매개변수보요소를 개발하여 스프링단면의 응력해석을 수행하고 그 결과 를 다음과 같이 검증할 것이다.우선 본 연구에 사용된 보요소가 이 두 효과를 효과 적으로 표현하고 있는지를 확인하기 위해서 간단한 비틀림실험과 비교할 것이다. 또 한 2차원문제에 대해서 입체요소를 이용한 결과와 비교하고, 원통형 스프링모델의 해 석결과를 Nagaya의 해석결과와 비교함으로써 실제 스프링해석에 효과적으로 적용될 수 있음을 보일 것이다.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory

  • Arefi, Mohammad;Bidgoli, Elyas Mohammad-Rezaei;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.27-40
    • /
    • 2018
  • The governing equations of motion are derived for analysis of a sandwich microbeam in this paper. The sandwich microbeam is including an elastic micro-core and two piezoelectric micro-face-sheets. The microbeam is subjected to transverse loads and two-dimensional electric potential. Higher-order sinusoidal shear deformation beam theory is used for description of displacement field. To account size dependency in governing equations of motion, strain gradient theory is used to mention higher-order stress and strains. An analytical approach for simply-supported sandwich microbeam with short-circuited electric potential is proposed. The numerical results indicate that various types of parameters such as foundation and material length scales have significant effects on the free vibration responses and dynamic results. Investigation on the influence of material length scales indicates that increase of both dimensionless material length scale parameters leads to significant changes of vibration and dynamic responses of microbeam.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.

할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배 (Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method)

  • 박홍근;김창수;엄태성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.221-224
    • /
    • 2008
  • 할선강성을 이용하여 모멘트저항골조의 모멘트재분배를 수행하는 선형해석법을 연구하였다. 제안된 방법에서는 모멘트재분배가 요구되는 부재의 소성힌지에 회전스프링을 모델링한 후, 이 스프링의 할선 강성을 조정하여 비탄성변형으로 인해 저감된 부재의 휨강성을 반영한다. 회전스프링의 할선강성을 조정하여 선형해석한 결과, 해당 부재와 전체 구조물에서 힘의 평형이 만족될 때까지 계산을 반복한다. 할선강성해석을 통해, 소성힌지의 비탄성변형에 의한 하중의 재분배가 고려될 수 있으며, 해당 소성힌지에서의 요구회전변형이 변형능력을 초과하지 않는지 비교함으로써 안전성을 평가할 수 있다. 검증을 위해, 제안된 방법은 기존의 연속보에 대한 실험연구와 비교되었으며, 기존건물의 평가에 적용되었다.

  • PDF

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels

  • Liu, Bo;Yu, Zhiwei;Han, Yanhui;Wang, Zhiliu;Yang, Shuo;Liu, Heng
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.405-418
    • /
    • 2020
  • Deep excavation may have impact on the adjacent tunnels. It is obvious that the excavation will adversely affect and even damage the existing tunnels if the induced deformation exceeds the capacity of tunnel structures. It hence creates a high necessity to predict tunnel displacement induced by nearby excavation to ensure the safety of tunnel. In this paper, a simplified method to evaluate the heave of the underlying tunnel induced by adjacent excavation is presented and verified by field measurement results. In the proposed model, the tunnel is represented by a series of short beams connected by tensile springs, compressional springs and shear springs, so that the rotational effect and shearing effect of the joints between lining rings can be captured. The proposed method is compared with the previous modelling methods (e.g., Euler-Bernoulli beam, a series of short beams connected only by shear springs) based on a field measured longitudinal deformation of subway tunnels. Results of these case studies show a reasonable agreement between the predictions and observations.

압입공정에서 기어의 이끝 및 이뿌리 변형량 예측 (A Prediction of the Amount of Dimensional Deformation of Addendum and Dedendum after Shrink Fitting Process)

  • 김지산;황범철;배원병;김철
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.463-473
    • /
    • 2011
  • The warm shrink fitting process is generally used to assemble automobile transmission parts (shaft/gear). But the fitting process can cause the dimensions of addendum and dedendum of the gear to change with respect to the fitting interference and the profile of the gear. As a result, there may be additional noise and vibration between gears. To address these problems, we analyzed the warm shrink fitting process according to process parameters; the fitting interference between the outer diameter of the shaft and the inner diameter of the gear, the inner diameter of the gear, addendum and dedendum of the gear, the heating temperature. In this study, a closed form equation for predicting the amount of deformation of addendum and dedendum in the R-direction was proposed. And the FEA method to analyze the cooling process was proposed for thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process).