• 제목/요약/키워드: Beam deformation

검색결과 1,215건 처리시간 0.021초

이축인장압축장이론에 기반한 PSC보의 전단변형 (Shear Deformation based on the Biaxial Tension-Compression Theory in Prestressed Concrete Members applied by Axial Loading)

  • 정제평;김대중;모귀석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.281-284
    • /
    • 2006
  • ASCE-ACI Committee 426 and 445, on Shear and Torsion, well noted in their report that recent research work regarding shear and torsion had been devoted primarily to members. But it was not logical approach of PSC members applied by axial force based on the shear deformation in web element. And it was not included that the effect of axial is to shift the shear strain(or crack width) in the web element versus the applied shear curve up or down by the amount by which the biaxial tension-compression state varies. The shear strength also increases or decreases, so that the change in shear strain at service load due to the presence of axial load is to some extent changed. Generally, in corresponding beams the shear strain at service load is less in the beam subject to axial compression and greater in the beam subject to axial tension, than in the beam without axial load. In particular, however, no research were available on the shear deformation in shear of PSC members with web reinforcement, subject to axial force in addition to shear and bending. Therefore, this study was basically performed to develop the program for the calculation of the shear deformation based on the shear effect of axial force in prestressed concrete members.

  • PDF

Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip

  • Zhou, Wangbao;Jiang, Lizhong;Huang, Zhi;Li, Shujin
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1023-1042
    • /
    • 2016
  • Based on Hamilton's principle, the flexural vibration differential equations and boundary conditions of the steel-concrete composite beam (SCCB) with comprehensive consideration of the influences of the shear deformation, interface slip and longitudinal inertia of motion were derived. The analytical natural frequencies of flexural vibration were compared with available results previously observed by the experiments, the results calculated by the FE model and the other similar beam theories available in the open literatures. The comparison results showed that, the calculation results of the analytical and Timoshenko models had a good agreement with the results of the experimental test and FE model. Finally, the influences of shear deformation and interface slip on the flexural natural frequencies of the SCCB were discussed. The shear deformation effect increases with the increase of the mode orders of flexural natural vibration, and the flexural natural frequencies of the higher mode orders ignoring the influence of shear deformations effect would be overestimated. The interface slip effect decrease with the increase of the mode orders of flexural natural vibration, and the influence of the interface slip effect on flexural natural frequencies of the low mode orders is significant. The influence of the degree of shear connection on shear deformation effect is insignificant, and the low order modes of flexural natural vibration are mainly composed of the rotational displacement of cross sections.

Preliminary Study on Deformation During Hydrostatic Testing in a Deep Tank

  • Kim, Geun-Gon;An, Tae-Hyun;Lee, Tak-Kee
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.115-124
    • /
    • 2022
  • There are many different types of tanks on ships that meet various requirements. Each tank is required to undergo hydrostatic testing according to the Ship Safety Act after being installed onboard. In some hydrostatic tests, excessive deformation may occur. The overpressure of the air in the tank generated during testing is one of the possible causes of deformation. Based on the dimensions of the tank, nozzle, and pipes installed, it was confirmed that the overpressure of the air can cause problems with the structure, according to the Bernoulli equation. Additionally, finite element analysis (FEA) was performed on the tank structure to confirm the deformation and the stress occurring in the structure. From the perspective of deformation, the maximum deflection limit was set based on the criteria provided by the Eurocode and DNV. From the perspective of stress, the structural safety assessment was performed by comparing the allowable stress and equivalent stress generated in the structure. To determine whether the behavior of the actual structure was well implemented via FEA, beam theory was applied to the tank structure and compared with the FEA results. As a result of the analysis, severe deformation was found in some cases. This means that the overpressure of the air may be the cause of actual deformation. It was also confirmed that permanent deformation may occur.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

철근콘크리트 보-기둥 접합부의 비선형 전단거동예측 (Prediction of Nonlinear Shear Behavior of Reinforced Concrete Beam-Column Joints)

  • 조창근;우성우
    • 한국지진공학회논문집
    • /
    • 제13권2호
    • /
    • pp.29-36
    • /
    • 2009
  • 본 연구는 철근콘크리트 내부 보-기둥 접합부의 전단거동 예측에 관한 비선형 모델을 제안한 것이다. 보-기둥 접합부 패널존에서의 전단거동 모델을 위하여 면내전단 예측을 위한 연화트러스모델 이론을 수정한 이론을 적용하였다. 이로부터 접합부에서의 평형조건에 의한 등가 모멘트 및 회전 관계를 이용하여 접합부에서의 전단변형 관계를 접합부의 회전스프링의 특성관계로 변환하여 고려토록 하였다. 소개된 해석모델을 축력 및 전단을 받는 내부 철근콘크리트 보-기둥 접합부의 실험과 비교하였으며, 제시된 모델은 접합부에서의 전단력 뿐만 아니라 전단변형의 예측에도 유효한 것으로 판단되었다.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

나노-TDR센서를 이용한 토목구조물 모니터링 시스템 (Application of Nano-TDR Health Monitoring System in Civil Engineering)

  • 한희수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권5호통권57호
    • /
    • pp.93-100
    • /
    • 2009
  • 이 논문은 나노물질이 결합된 시간반사영역기(TDR)의 보의 변형에 관한 실험자료와 기존 구조 해석기법에 따른 변형간의 상관관계를 평가하기 위한 것이다. TDR의 동축케이블에 일정한 간격마다 나노물질 ($BaTiO_3$ powders and silver mixture)을 결합하여 토목구조물에 설치할 수 있도록 하였다. 실험결과,나노물질은 보에 설치된 동축케이블의 정확한 위치정보를 알려주었으며, TDR센서시스템과 Fourier series 를 활용하여 필터링 된 실험 자료는 보의 변형을 정확하게 알려주었다. 그러므로, 나노-TDR시스템과 Fourier filter를 활용하여 보의 변형에 관한 정확한 모니터링이 가능하였으며, 변형에 관한 보다 나은 해석이 가능하다는 점에서 기존의 TDR센서 혹은 광섬유 센서보다 진보한 시스템이라 할 수 있다.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams

  • Wang, Tong;He, Tao;Li, Hongjing
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1139-1153
    • /
    • 2016
  • Elastic constraints are usually simplified as "spring forces" exerted on beam ends without considering the "spring deformation". The partial differential equation governing the free vibrations of a cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and is nondimensionalized to obtain two dimensionless factors, $k_v$ and $k_r$, describing the effects of elastically vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-Euler beam model is derived using the method of separation of variables. A numerical analysis method is proposed to solve the transcendental frequency equation for the continuous change of the frequency with $k_v$ and $k_r$. Then the mode shape functions are given. Finally, effects of $k_v$ and $k_r$ on free vibration characteristics of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects of $k_v$ are larger on higher-order free vibration characteristics than on lower-order ones, and the impact strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of $k_v$ can be neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the effects of $k_r$ are large on both higher- and lower-order free vibration characteristics, and cannot be neglected no matter the slenderness ratio is large or small.

후륜 토션빔 서스펜션에 대한 구조해석에 의한 융합연구 (A Convergence Study by Structural Analysis on Torsion Beam Suspension of Rear Wheel)

  • 최계광;조재웅
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.187-192
    • /
    • 2019
  • 본 연구에서는 토션빔 후륜 서스펜션의 형상에 따른 구조 및 피로 해석을 하였다. 실제 토션빔 서스펜션의 형상과 비슷한 3종류의 모델들을 해석하여 어떤 것이 강도상에서 가장 좋은 지를 알아본다. 토션빔 서스펜션의 모델들은 CATIA프로그램을 통하여 Model A, B, C 3종류로 설계하였고 ANSYS 프로그램을 이용하여 구조 및 피로 해석의 결과들을 얻었으며, 어떤 Model이 다른 모델에 비해 더 나은 구조적 형상인지 확인한다. 해석 결과에 따르면 변형은 주로 가운데 부분에서 가장 크게 발생하며 Total deformation의 경우 Model B가 model A, C 에 비하여 변형이 가장 적었다. 마찬가지로 Equivalent stress에서도 Model B가 가장 작은 값이 나타난 것으로 보아 Model B가 가장 강도적인 면에서 가장 좋은 것으로 판단되었으며, 후륜 토션빔 서스펜션 설계 시에 디자인 예술과 융합하는 것이 가장 효율적이라고 사료된다.