• 제목/요약/키워드: Beam deformation

Search Result 1,228, Processing Time 0.023 seconds

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Exterior Diaphragm (외부다이아프램으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.205-220
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of concrete-filled steel tubular column-H beam connections with exterior stiffeners. As a preliminary test, simple tensile test on the column to H-beam flange connections stiffened were conducted The paramaters of tensile test are the thickness(T=9, 12, 15m) and the width(W=50, 75, 100, 150mm) of exterior stiffeners. The simple tensile test were conducted to 7 kinds of specimens. Estimating the load, displacement, and strain from each kind, results of simple tensile test were compared with results of second test. On the basis of simple tensile test, test on the column to H-km connections stiffened with the sames under monotonic and cyclic load were conducted. Specimens of 5 for the second experiment were made. In analysis, comparing each strengthes and stiffnesses we estimated deformation capacity. Comparing and estimating each yielding strength ratios and maxium-strength ratios on the basis of yield line theory, new strength formula of beam-to-column connections was suggested.

  • PDF

Bending Performance Evaluation of Hybrid Forming Composite Beam with High Depth (춤이 큰 고성능 하이브리드 합성보의 휨성능 평가)

  • Kim, Sung Bae;Cho, Seong Hyun;Lee, Jae Yeong;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.403-414
    • /
    • 2016
  • Recently according to the decreasing of steel price and increasing of labor cost the various studies of steel structure and composite structure are proceeding. This study developed the new shape of high depth hybid forming composite beam and performed the bending test to evaluate the bending performance by creating 10 specimens. Bending test result showed that capacity of the beam was increased stably. The ratio of the nominal load to the maximum load($P_u/P_n$) is 1.19 and the deformation capacity(${\delta}_{0.8P_u}/{\delta}_y$) is 3.9~4.5. Also, it is possible to apply the existing evaluation equation(KBC 2009) of composite beam.

Earthquake Resistance of Beam-Column Connection of Precast Concrete U-Shaped Shell Construction (프리캐스트 콘크리트 U형 쉘 공법 보-기둥 접합부의 내진성능)

  • Im, Hyeong-Ju;Park, Hong-Gun;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.741-751
    • /
    • 2010
  • An experimental study was performed to investigate the earthquake resistance of the beam-column connections as a part of a precast concrete moment-resisting frame that uses precast concrete U-shaped shells for the beams. Five full-scale precast concrete specimens and one conventional monolithic concrete specimen were tested under cyclic loading. The parameters for this test were the reinforcement ratio, stirrup spacing, and end-strengthening details of the precast beam shell. The test results showed that regardless of the test parameters, the precast concrete beam-column connections showed good load-carrying capacity and deformation capacity, which were comparable to those of conventional monolithic concrete specimen. However, at large deformations, the beam-column connections of the precast concrete specimens were subjected to severe strength degradation due to diagonal shear cracks and the bond-slip of re-bars at the joint region. For this reason, the energy dissipation capacity and stiffness of the precast concrete specimens were significantly less than those of the cast-in-place specimen.

An Advanced Design Procedure for Dome and Ring Beam of Concrete Containment Structures (콘크리트 격납구조물 돔과 링빔의 개선된 설계기법)

  • Jeon, Se-Jin;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.817-824
    • /
    • 2010
  • The concrete containment structures have been widely used in nuclear power plants, LNG storage tanks, etc., due to their high safety and economic efficiency. The containment structure consists of a bottom slab, wall, ring beam and dome. The shape of the roof dome has a very significant effect on structural safety, the quantity of materials, and constructability; the thickness and curvature of the dome should therefore be determined to give the optimum design. The ring beam plays the role as supports for the dome, resulting in a minimized deformation of the wall. The main issues in designing the ring beam are the correct dimensions of the section and the prestress level. In this study, an efficient design procedure is proposed that can be used to determine an optimal shape and prestress level of the dome and ring beam. In the preliminary design stage of the procedure, the membrane theory of shells of revolution is adopted to determine several plausible alternatives which can be obtained even by hand calculation. Based on the proposed procedures, domes and ring beams of the existing domestic containment structures are analyzed and some improvements are discussed.

An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations

  • Shokouhifard, Vahid;Mohebpour, Saeedreza;Malekzadeh, Parviz;Alighanbari, Hekmat
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.61-76
    • /
    • 2020
  • In this paper, the dynamic behaviour of an inclined functionally graded material (FGM) beam with different boundary conditions under a moving mass is investigated based on the first-order shear deformation theory (FSDT). The material properties vary continuously along the beam thickness based on the power-law distribution. The system of motion equations is derived by using Hamilton's principle. The finite element method (FEM) is adopted to develop a general solution procedure. The moving mass is considered on the top surface of the beam instead of supposing it on the mid-plane. In order to consider the Coriolis, centrifugal accelerations and the friction force, the contact force method is used. Moreover, the effects of boundary conditions, the moving mass velocity and various material distributions are studied. For verification of the present results, a comparative fundamental frequency analysis of an FGM beam is conducted and the dynamic transverse displacements of the homogeneous and FGM beams traversed by a moving mass are compared with those in the existing literature. There is a good accord in all compared cases. In this study for the first time in dynamic analysis of the inclined FGM beams, the Coriolis and centrifugal accelerations of the moving mass are taken into account, and it is observed that these accelerations can be ignored for the low-speeds of the moving mass. The new provided results for dynamics of the inclined FGM beams traversed by a moving mass can be significant for the scientific and engineering community in the area of FGM structures.

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams

  • Ebrahimi, S.;Zahrai, S.M.;Mirghaderi, S.R.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.541-558
    • /
    • 2019
  • In Special Concentrically Braced Frames (SCBFs), vertical and horizontal components of the brace force must be resisted by column and beam, respectively but normal force component existing at the gusset plate-to-column and beam interfaces, creates out-of-plane action making distortion in column and beam faces adjacent to the gusset plate. It is a main concern in Hollow Structural Section (HSS) columns and beams where their webs and gusset plate are not in the same plane. In this paper, a new gusset plate passing through the HSS columns and beams, named as through gusset plate, is proposed to study the force transfer mechanism in such gusset plates of SCBFs compared to the case with conventional gusset plates. For this purpose, twelve SCBFs with diagonal brace and HSS columns and twelve SCBFs with chevron brace and HSS columns and beams are considered. For each frame, two cases are considered, one with through gusset plates and the other with conventional ones. Based on numerical results, using through gusset plates prevents distortion and out-of-plane deformation at HSS column and beam faces adjacent to the gusset plate helping the entire column and beam cross-sections to resist respectively vertical and horizontal components of the brace force. Moreover, its application increases energy dissipation, lateral stiffness and strength around 28%, 40% and 32%, respectively, improving connection behavior and raising the resistance of the normal force components at the gusset plate-to-HSS column and beam interfaces to approximately 4 and 3.5 times, respectively. Finally, using such through gusset plates leads to better structural performance particularly for HSS columns and beams with larger width-to-thickness ratio elements.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.