• Title/Summary/Keyword: Beam deformation

Search Result 1,223, Processing Time 0.025 seconds

Simulation of H-beam rolling process using FEM (FEM을 이용한 H형강 압연공정 해석)

  • Park, C.S.;Kim, J.M.;Woo, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.419-422
    • /
    • 2008
  • It is most important to design the roll pass in shape rolling process. However, roll pass design has been accomplished by experience and intuition of a skilled engineer up to now. And it has being produced throughout a lot of trial and error. Thus, in this study, we tried to analysis the rolling process of H-beam by using FEM program for the quantitative evaluation of the plastic deformation. It could be predicted that rolling load, torque, shape of cross section and distribution of effective strain each pass by the analysis of rolling from break down mill(2 Hi rolling) to finishing rolling(Universal rolling) considering the heat transfer.

  • PDF

Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load

  • Azmi, Masoud;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.51-63
    • /
    • 2019
  • The project focuses on the dynamic analysis of concrete beams reinforced with silica-nanoparticles under blast loading. The structure is located at two boundary conditions. The equivalent composite properties are determined using Mori-Tanak model. The structure is simulated with sinusoidal shear deformation theory. Employing nonlinear strains-displacements, stress-strain, the energy equations of beam were obtained and using Hamilton's principal, the governing equations were derived. Using differential quadrature methods (DQM) and Newmark method, the dynamic deflection of the structure is obtained. The influences of volume percent and agglomeration of silica nanoparticles, geometrical parameters of beam, boundary condition and blast load on the dynamic deflection were investigated. Results showed that with increasing volume percent of silica nanoparticles, the dynamic deflection decreases.

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

Effect of pre-magneto-electro-mechanical loads and initial curvature on the free vibration characteristics of size-dependent beam

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper studies application of modified couple stress theory and first order shear deformation theory to magneto-electro-mechanical vibration analysis of three-layered size-dependent curved beam. The curved beam is resting on Pasternak's foundation and is subjected to mechanical, magnetic and electrical loads. Size dependency is accounted by employing a small scale parameter based on modified couple stress theory. The magneto-electro-mechanical preloads are accounted in governing equations to obtain natural frequencies in terms of initial magneto-electro-mechanical loads. The analytical approach is applied to investigate the effect of some important parameters such as opening angle, initial electric and magnetic potentials, small scale parameter, and some geometric dimensionless parameters and direct and shear parameters of elastic foundation on the magneto-electro-elastic vibration responses.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Bending analysis of power-law sandwich FGM beams under thermal conditions

  • Garg, Aman;Belarbi, Mohamed-Ouejdi;Li, Li;Tounsi, Abdelouahed
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.243-261
    • /
    • 2022
  • Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

Validity assessment of aspect ratios based on Timoshenko-beam model: Structural design

  • Emad Ghandourah;Muzamal Hussain;Mohamed A. Khadimallah;Mashhour Alazwari;Mohamed R. Ali;Mohammed A. Hefni
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, Timoshenko-beam model is developed for the vibration of double carbon nanotubes. The resulting frequencies are gained for axial wave mode and length-to-diameter ratios. The natural frequency becomes more prominent for lower length-to-diameter ratios and diminished for higher ratios. The converse behavior is observed for axial wave mode with clamped-clamped and clamped-free boundary conditions. The frequencies of clamped-free are lower than that of clamped-clamped boundary condition. The eigen solution is obtained to extract the frequencies of double walled carbon nanotubes using Galerkin's method through axial deformation function. Computer softer MATLAB is used for formation of frequency values. The frequency data is compared with available literature and found to be in agreement.

Sport injury diagnosis of players and equipment via the mathematical simulation on the NEMS sensors

  • Zishan Wen;Hanhua Zhong
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.201-215
    • /
    • 2024
  • The present research study emphasizes the utilization of mathematical simulation on a nanoelectromechanical systems (NEMS) sensor to facilitate the detection of injuries in players and equipment. Specifically, an investigation is conducted on the thermal buckling behavior of a small-scale truncated conical, cylindrical beam, which is fabricated using porous functionally graded (FG) material. The beam exhibits non-uniform characteristics in terms of porosity, thickness, and material distribution along both radial and axial directions. To assess the thermal buckling performance under various environmental heat conditions, classical and first-order nonlocal beam theories are employed. The governing equations for thermal stability are derived through the application of the energy technique and subsequently numerically solved using the extended differential quadratic technique (GDQM). The obtained results are comprehensively analyzed, taking into account the diverse range of effective parameters employed in this meticulous study.

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener (개량수평스티프너를 보강한 고강도강(HSA800) 접합부 내진성능평가)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.361-373
    • /
    • 2014
  • As the height and beam span of buildings built in the construction market increase, increasingly higher quality is being required of the construction materials. In response to this trend, 800MPa tensile strength class steel was developed in domestic company. Currently, experiments applying flexural member, compression member, and connections are continuously conducted, but a design guideline for high strength steel has yet to be established. Among those construction materials, for the high strength steel beam-to-column connections, the evaluation of implementing ductile connections for the high strength steel beam-to-column connections is producing pessimistic results and the number of related researches is inadequate because of the high yield ratio, which is the characteristic of high strength steel. This study on implementation of ductile connections made of high strength steel was conducted using the connection detail as the variable, for the purpose of enhancing the deformation capacity of high strength steel beam-to-column connections. Cyclic loading test and nonlinear finite element analysis were conducted with full-scale mock-up connection models with the applied connection details. As a result, the structural performance of high-strength steel beam-to-column connection with presented detail was contented with demand of Special Moment Frames of KBC standard.