• Title/Summary/Keyword: Beam deformation

Search Result 1,215, Processing Time 0.025 seconds

A unified formulation for static behavior of nonlocal curved beams

  • Tufekci, Ekrem;Aya, Serhan A.;Oldac, Olcay
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.475-502
    • /
    • 2016
  • Nanobeams are widely used as a structural element for nanodevices and nanomachines. The development of nano-sized machines depends on proper understanding of mechanical behavior of these nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, grain size etc. are need to be considered when applying any classical continuum model. In this study, Eringen's nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial extension and the shear deformation to capture unique static behavior of the nanobeams under continuum mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by using the initial value method. Circular uniform beam with concentrated loads are considered. The displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary conditions, and slenderness ratio on the static behavior of the nanobeam.

Free Vibrations of Generally Restrained Beams (일반적인 단부조건을 갖는 보의 자유진동)

  • 신성철;김봉규;안대순;김선기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.864-869
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and point masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a range of non-dimensional system parameters.

  • PDF

Cyclic-Loading Test of Exterior Deep-Beam Lower-Column Joint in Upper-Wall Lower-Frame Structure (주상복합구조에서 전이보와 외부기둥 접합부의 반복횡하중 실험)

  • 이한선;김상연;고동우;권기혁;최성모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.851-856
    • /
    • 2000
  • When subjected to the strong earthquake ground motion, upper-wall lower-frame structures have high possibility of the weak-story failure in the lower frame part. Sufficient strength, energy dissipation capacity and ductility should be provided at the joint between the deep beam and the lower column. In this study, a typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblage including the exterior column and the deep beam, were constructed. The transverse reinforcement was designed according to ACI procedure¹ and the procedure proposed by Sheikh². The inelastic behavior of the subassemblages subjected to the cyclic lateral displacement were evaluated through investigation of the ultimate strength, ductility, load-deformation characteristics. From the test of 4 specimens, it is concluded that the specimens designed according to Sheikh's procedure revealed higher ductility than that by ACI procedure.

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

The Poisson effect on the curved beam analysis

  • Chiang, Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.707-720
    • /
    • 2005
  • The bending stress formula that taking into account the transverse deformation is developed for plane-curved, untwisted isotropic beams subjected to loadings that result in deformations in the plane of curvature. In order to account the transverse Poisson contraction effect, a new constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures for a curved plate is derived in a $6{\times}6$ matrix form. This constitutive relation will provide the fundamental basis to the analyses of curved structures composing of isotropic or anisotropic materials. Then, the bending stress formula of a curved isotropic beam can be deduced from this newly developed curved plate theory. The stress predictions by the present analysis are compared to those by the analysis that neglected the Poisson contraction effect. The results show that the Poisson effect becomes more significant as the Poisson ratio and the curvature are getting larger.

Free vibration analysis of edge cracked symmetric functionally graded sandwich beams

  • Cunedioglu, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1003-1020
    • /
    • 2015
  • In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.

Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory

  • Simsek, Mesut
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.59-76
    • /
    • 2011
  • Dynamic analysis of an embedded single-walled carbon nanotube (SWCNT) traversed by a moving nanoparticle, which is modeled as a moving load, is investigated in this study based on the nonlocal Timoshenko beam theory, including transverse shear deformation and rotary inertia. The governing equations and boundary conditions are derived by using the principle of virtual displacement. The Galerkin method and the direct integration method of Newmark are employed to find the dynamic response of the SWCNT. A detailed parametric study is conducted to study the influences of the nonlocal parameter, aspect ratio of the SWCNT, elastic medium constant and the moving load velocity on the dynamic responses of SWCNT. For comparison purpose, free vibration frequencies of the SWCNT are obtained and compared with a previously published study. Good agreement is observed. The results show that the above mentioned effects play an important role on the dynamic behaviour of the SWCNT.

Steel-concrete composite bridge analysis using generalised beam theory

  • Goncalves, Rodrigo;Camotim, Dinar
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2010
  • This paper reports recent developments concerning the application of Generalised Beam Theory (GBT) to the structural analysis of steel-concrete composite bridges. The potential of GBT-based semi-analytical or finite element-based analyses in this field is illustrated/demonstrated by showing that both accurate and computationally efficient solutions may be achieved for a wide range of structural problems, namely those associated with the bridge (i) linear (first-order) static, (ii) vibration and (iii) lateral-torsional-distortional buckling behaviours. Several illustrative examples are presented, which concern bridges with two distinct cross-sections: (i) twin box girder and (ii) twin I-girder. Allowance is also made for the presence of discrete box diaphragms and both shear lag and shear connection flexibility effects.

A Study on the Analysis of Overload of a Two-Span Continuous Bridige (2경간 연속교의 과재하중 해석방법에 관한 연구)

  • 한상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 1993
  • Residual Deformation Analysis(RDA) is a new method for ratings of the continuous bridges. The RDA makes it possible to expand the inelastic steel girder bridge design method set forth in the American Association of State Highway Officals'(AASHTO) Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections(1986) into an inelastic rating method. It is a method to assess the residual moments and deformations that are set up in a beam that has been loaded into the post-elastic range This method combines classical elastic conjugate beam theory with linear moment-rotation relationships for midspan inelastic positive moment. The limit state is inelastic serviceability limit. which is defined as the ratio of the span to midspan inelastic deflection(C=L/D).

  • PDF

Simulation of H-beam rolling process using FEM (FEM을 이용한 H형강 압연공정 해석)

  • Park, C.S.;Kim, J.M.;Woo, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.419-422
    • /
    • 2008
  • It is most important to design the roll pass in shape rolling process. However, roll pass design has been accomplished by experience and intuition of a skilled engineer up to now. And it has being produced throughout a lot of trial and error. Thus, in this study, we tried to analysis the rolling process of H-beam by using FEM program for the quantitative evaluation of the plastic deformation. It could be predicted that rolling load, torque, shape of cross section and distribution of effective strain each pass by the analysis of rolling from break down mill(2 Hi rolling) to finishing rolling(Universal rolling) considering the heat transfer.

  • PDF